首页|融合注意力机制与YOLOv5s的服装领型自动检测方法

融合注意力机制与YOLOv5s的服装领型自动检测方法

扫码查看
为了解决光线、人体姿势、环境噪声和拍摄设备等外部因素对服装领型检测精度的影响,提出了一种融合注意力机制与YOLOv5s的服装领型自动检测方法.首先,构建并标注了11个类别的服装领型数据集;然后,通过改变激活函数、引入注意力机制等方式对原YOLOv5s模型进行改进,提升模型检测的准确性;最后,对改进的模型进行训练、验证和测试.实验结果表明:选择FreLU作为激活函数,并把CBAM注意力机制融入到原YOLOv5s模型中,检测效果更佳;改进后的模型mAP@0.5值可达0.824,每秒能处理27.78帧图像,两项指标均优于faster RCNN和SSD512方法,表明本方法能够完成复杂背景下的服装领型自动检测任务.
Automatic Detection Method for Clothing Collar Shape Combining Attention Mechanism and YOLOv5s
In order to solve the influence of external factors such as light,human body posture,environmental noise and shooting equipment on the accuracy of clothing collar shape detection,this paper proposed an automatic clothing collar shape detection method integrating attention mechanism and YOLOv5s.First,11 categories of cloth-ing collar data sets were constructed and labeled;then the original YOLOv5s model by changing the activation func-tion and introducing the attention mechanism to improve the accuracy of model was improved detection; finally,it carried out training,verification and test on the improved model.The experimental results show that choosing Fre-LU as the activation function and integrating the CBAM attention mechanism into the original YOLOv5s model has a better detection effect.After the test set test,the improved model mAP@0.5 value can reach 0.824,and can process 27.78 frames of images per second,both of which are better than the faster RCNN and SSD512 methods.Therefore,the method in this paper can complete the automatic detection task of clothing collar shape under com-plex background.

YOLOv5s modelclothingcollar shapetarget detectionpositioning

游小荣、李淑芳

展开 >

常州纺织服装职业技术学院,常州213164

常州市生态纺织技术重点实验室,常州213164

YOLOv5s模型 服装 领型 目标检测 定位

江苏省高等学校大学生实践创新训练项目

202112807013Y

2024

北京服装学院学报(自然科学版)
北京服装学院

北京服装学院学报(自然科学版)

影响因子:0.17
ISSN:1001-0564
年,卷(期):2024.44(1)
  • 14