首页|基于EF-UNet的服装图像分割研究

基于EF-UNet的服装图像分割研究

扫码查看
针对服装局部分割精度低以及出现错分、漏分的问题,提出了一种改进的VGG16-UNet服装图像分割方法(即EF-UNet).通过在编码器末端加入ECA注意力机制的方法赋予编码器第5层更大权重,更好地提取目标特征信息,从而增强对服装图像的分割能力.进一步在解码器中采用添加多级特征融合的方式捕捉各种尺度的信息特征以达到提高分割效果的目的.结果表明:改进后的分割模型与UNet、PSPNet、DeepLab v3+、VGG16-UNet语义分割模型相比,模型训练指标更高,分割效果更好.相比VGG16-UNet平均交并比(mIOU)、类别平均像素准确率(mPA)和准确度(Accuracy)分别提高了 4.62%、4.59%和 0.29%.
Research on Clothing Image Segmentation based on EF-UNet
An improved VGG16-UNet garment image segmentation method(EF-UNet)is proposed to address the problems of low accuracy of localized garment segmentation,as well as the occurrence of mis-segmentation and o-mission.By adding the ECA attention mechanism at the end of the encoder,the encoder layer 5 is given more weight to better extract the target feature infor-mation,thus enhancing the segmentation ability of the garment im-age.Further,the addition of multi-level feature fusion is used in the decoder to capture features of various scales to achieve the purpose of improving the segmentation effect.The results show that the improved segmentation model has a higher model training index and better segmentation effect compared with UNet,PSPNet,DeepLab v3+,and VGG16-UNet semantic segmentation models.Compared with VGG16-UNet mean intersection over union(mIOU),mean pixel accuracy(mPA)and accuracy(Accuracy)are improved by 4.62%,4.59%and 0.29%,respective-ly.

clothing imagesemantic segmentationVGG16-UNet networkECA attention mechanismmulti-lev-el feature fusion

俞凯杰、陈郁

展开 >

上海工程技术大学纺织服装学院,上海 201600

服装图像 语义分割 VGG16-UNet网络 ECA注意力机制 多级特征融合

2024

北京服装学院学报(自然科学版)
北京服装学院

北京服装学院学报(自然科学版)

影响因子:0.17
ISSN:1001-0564
年,卷(期):2024.44(4)