首页|空间信息引导的双分支实时语义分割算法

空间信息引导的双分支实时语义分割算法

扫码查看
针对实时语义分割模型大量缩减参数造成特征空间信息损失,以及特征缺少上下文信息导致分割类别预测不准确的问题,提出一种基于空间信息引导的双分支实时语义分割算法。该算法采用双分支结构分别获取特征的空间信息和语义信息,为更好地保留空间信息,设计了一种空间引导模块(SGM),同时捕获特征的局部信息和周围上下文信息,并通过通道加权给予重要信息更高的权重,有效弥补了图像高分辨率特征在降采样过程中的信息损失;为进一步强化特征的上下文信息表征能力,设计了池化特征增强模块(PFEM),采用不同尺寸的池化核捕获多尺度特征信息,并采用条状池化核对特征之间的长距离依赖关系进行建模,更好地确定分割区域的类别。在Cityscapes和CamVid数据集上对所提算法进行验证,平均交并比分别达到 77。4%和 74。0%,检测速度分别达到 49。1帧/s和 124。5帧/s,在保证实时分割的情况下有效提升了精度,获得了良好的语义分割性能。
Two-branch real-time semantic segmentation algorithm based on spatial information guidance
In view of feature spatial information loss caused by the reduction of a large number of parameters in the real-time semantic segmentation model and inaccurate segmentation category prediction caused by the lack of context information of features,a two-branch real-time semantic segmentation algorithm based on spatial information guidance was proposed.In order to better retain the spatial information,the algorithm used a two-branch structure to obtain the spatial and semantic information of features,respectively.A spatial guided module(SGM)was designed to capture the local information and the surrounding context information of the features and give higher weight to the important information through channel weighting,which effectively made up for the image information loss of high-resolution features in the process of downsampling.A pooling feature enhancement module(PFEM)was designed to further enhance the ability of context information characterization of features.Pooling cores of different sizes were used to capture multi-scale feature information,and the long-distance dependence relationship between the features was modeled by strip-shaped pooling cores.The category of the segmentation region was better determined.The proposed algorithm was verified on Cityscapes and CamVid datasets,and the mean intersection over union reached 77.4%and 74.0%,respectively.The detection speed reached 49.1 frames per second and 124.5 frames per second,respectively,which effectively improved the accuracy and achieved good semantic segmentation performance while ensuring real-time segmentation.

imaging processingreal-time semantic segmentationconvolutional neural networksdilated convolutioncontext information

侯志强、戴楠、程敏捷、李富成、马素刚、范九伦

展开 >

西安邮电大学计算机学院,西安 710121

陕西省网络数据分析与智能处理重点实验室,西安 710121

西安邮电大学通信与信息工程学院,西安 710121

图像处理 实时语义分割 卷积神经网络 空洞卷积 上下文信息

2025

北京航空航天大学学报
北京航空航天大学

北京航空航天大学学报

北大核心
影响因子:0.617
ISSN:1001-5965
年,卷(期):2025.51(1)