首页|基于AAGC-GRU的航班延误组合预测方法

基于AAGC-GRU的航班延误组合预测方法

扫码查看
针对航班延误预测模型中延误数据的时空动态相关性难以提取的问题,提出一种基于自适应注意力图卷积门控循环单元(AAGC-GRU)的航班延误预测模型。以机场为节点构建机场网络拓扑图,结合空间注意力机制及自适应图卷积神经网络,弥补图卷积神经网络对先验知识过度依赖的缺陷,同时增强模型对机场网络空间动态相关性的自动挖掘能力;采用门控循环单元获取航班延误数据的时间相关性,并引入时间注意力机制来学习不同时间步数据的影响权重;采用全连接层获取航班延误预测结果。利用美国大型机场网络的航班离港准点率数据集进行实验,结果表明:所提AAGC-GRU模型的预测结果在平均绝对误差、均方根误差和平均绝对百分误差方面均优于梯度提升回归树、门控循环单元及时空图卷积神经网络等基线模型。
Combined prediction method of flight delay based on attention-based adaptive graph convolution-gated recurrent unit
Aiming at the problem of the difficult extraction of spatio-temporal dynamic correlation of flight delay data in a flight delay prediction model,a type of flight delay prediction model based on an attention-based adaptive graph convolution-gated recurrent unit(AAGC-GRU)is proposed.Firstly,the airport network topology graph is constructed with the airport as the node.When combined with the spatial attention mechanism and adaptive graph convolution,it improves the model's autonomous mining of the spatial dynamic correlation of the airport network and compensates for the over-reliance of graph convolution on prior knowledge.Secondly,GRU was used to obtain the temporal dependence of historical flight delay data,and the time attention mechanism was introduced to automatically allocate the influence weight of data at different time steps,so as to fully capture the impact degree of data at different moments.Then,the fully connected layer is used to obtain the flight delay prediction results.Finally,the experiments are conducted on the on-time departure rate dataset of the American large airport network.In terms of mean absolute error,root mean square error,and mean absolute percentage error,the AAGC-GRU model outperforms the gradient boosting regression tree,gated recurrent unit model,spatio-temporal graph convolutional neural network,and other baseline models.

flight delay predictiondeep learningadaptive graph convolutiongated recurrent unitattention mechanism

刘晓琳、郭梦娇、李卓

展开 >

中国民航大学电子信息与自动化学院,天津 300300

中国农业大学信息与电气工程学院,北京 100083

航班延误预测 深度学习 自适应图卷积 门控循环单元 注意力机制

2025

北京航空航天大学学报
北京航空航天大学

北京航空航天大学学报

北大核心
影响因子:0.617
ISSN:1001-5965
年,卷(期):2025.51(1)