首页|基于复数卷积和注意力机制的并行磁共振成像重建

基于复数卷积和注意力机制的并行磁共振成像重建

扫码查看
针对并行磁共振成像的重建,提出深度复数注意力网络(DCANet)模型。根据磁共振成像数据的复数性质,该模型使用复数卷积替换常规实数卷积;由于并行磁共振成像的数据中每个线圈获取到的数据有所不同,该模型还使用逐通道的注意力机制来重点关注有效特征较多的通道;该模型使用数据一致性层保留采样过程中的原始数据,最终形成级联网络。使用 3个不同的采样模式对 2个不同磁共振成像数据序列进行实验,实验结果表明:DCANet模型具有较好的重建效果,能够获得更高的峰值信噪比(PSNR)和结构相似性指数(SSIM),以及更低的高频误差范数(HFEN),其中,PSNR相比磁共振成像级联通道注意力网络(MICCAN)、Deepcomplex、双倍频网络(DONet)这3种模型平均分别提高了4。52 dB、2。30 dB和1。21 dB。
Parallel MRI reconstruction by using complex convolution and attention mechanism
for the reconstruction of parallel magnetic resonance imaging,a deep complex attention network(DCANet)model is proposed.A data consistency layer is used to maintain acquired k-space data unchanged,and a cascade network is formed.Additionally,since magnetic resonance images of multiple coils differ,the proposed model also uses a channel-wise attention mechanism to focus on channels with more effective features.All of these techniques are used to replace the conventional method of convolving real and imaginary parts separately in complex convolution.Experiments are conducted on two different magnetic resonance imaging datasets with three different undersampling patterns.According to the experimental findings,the DCANet model performs better during reconstruction and achieves lower high-frequency error norm(HFEN)and greater peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).The DCANet model achieves average PSNR improvements of 4.52 dB,2.30 dB and 1.21 dB over MRI cascaded channel-wise attention network(MICCAN),Deepcomplex and DONet models,respectively.

parallel magnetic resonance imagingimage reconstructiondeep learningcomplex convolutional networksattention mechanism

段继忠、肖琛

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

并行磁共振成像 图像重建 深度学习 复数卷积网络 注意力机制

2025

北京航空航天大学学报
北京航空航天大学

北京航空航天大学学报

北大核心
影响因子:0.617
ISSN:1001-5965
年,卷(期):2025.51(1)