首页|基于注意力引导和多样本决策的舰船检测方法

基于注意力引导和多样本决策的舰船检测方法

扫码查看
单阶段目标检测方法具有训练速度快、检测时间短的特点,然而其特征金字塔网络(FPN)难以抑制合成孔径雷达(SAR)舰船图像的背景和噪声信息,且检测头存在预测误差.针对该问题,提出一种基于注意力引导和多样本决策的检测方法,用于SAR舰船检测.提出一种注意力引导网络,将其添加至特征金字塔的最高层,使其抑制背景和噪声干扰,从而提升特征的表示能力.提出多样本决策网络,使其参与目标位置的预测.该网络通过增加回归分支中输出的样本数量,缓解预测误差对检测结果的影响.设计了一种新颖的最大似然损失函数.该损失函数利用多样本决策网络中输出的样本构造出最大似然函数,用于规范决策网络的训练,进一步提升目标定位的精度.以RetinaNet网络模型为基线方法,相较于基线方法及目前先进的目标检测方法,所提方法在舰船检测数据集SSDD上表现出最高的检测精度,AP达到 52.8%.相比基线方法,所提方法在AP评价指标上提升了3.4%~5.7%,且训练参数量仅增加2.03×106,帧率仅降低0.5帧/s.
Ship detection method based on attentional guidance and multi-sample decision
The ones-stage object detection method has the characteristics of fast training speed and short inference time.However,its feature pyramid network(FPN)cannot suppress the background and noise information of the synthetic aperture radar(SAR)ship image,and the detection head has a prediction bias.This paper proposes a detection model based on attention guidance and multi-sample decisions for SAR ship detection.Firstly,in order to improve feature representation,this study suggests adding an attentional guidance network to the top of the feature pyramid in order to decrease noise and background interference.Secondly,Multi-sample decision networks are proposed to participate in predicting ship locations.By increasing the amount of output samples in regression branches,the network reduces the impact of prediction bias on detection outcomes.Finally,a novel maximum likelihood loss function is designed.The loss function constructs the maximum likelihood function from the output samples of multiple decision networks,which is used to standardize the training of decision networks and further improve the accuracy of target positioning.Compared with RetinaNet and current advanced object detection methods,the proposed method shows higher detection accuracy on the SSDD dataset,with AP up to 54%.Compared with the baseline method,the SARetinaNet method improved the AP evaluation index by 3.4%~5.7%,the number of training parameters Params only increased by 2.03M,and the FPS only increased by 0.5iter/s.

ship detectionattentional guidancemulti-sample decisionmaximum likelihood loss functionone-stage detectionsynthetic aperture radar

吕奕龙、苟瑶、李敏、何玉杰、邢宇航

展开 >

火箭军工程大学作战保障学院,西安 710025

舰船检测 注意力引导 多样本决策 最大似然损失函数 单阶段检测 合成孔径雷达

2025

北京航空航天大学学报
北京航空航天大学

北京航空航天大学学报

北大核心
影响因子:0.617
ISSN:1001-5965
年,卷(期):2025.51(1)