首页|多策略融合的改进黑猩猩优化算法

多策略融合的改进黑猩猩优化算法

扫码查看
针对黑猩猩优化算法存在迭代速度慢、精度不高及初始化分布不均匀等问题,提出一种融合多策略的改进黑猩猩优化算法.采用改进的Sine混沌映射初始化种群,解决种群边界聚集分布问题,引入考虑线性权重系数、自适应加速因子的粒子群思想,配合改进的非线性收敛因子平衡算法的全局搜索能力,加快算法收敛,提高收敛精度.引入自适应水波因子改进麻雀精英突变和Bernoulli混沌映射策略,提高个体跳出局部最优的能力.利用22个基准测试函数进行迭代分析求解和Wilcoxon秩和统计检验,得出所提算法迭代速度更快、精度更高、跳出局部最优能力更强.将所提算法应用到工程实例中,进一步验证算法处理现实优化问题的优越性.
Improved chimpanzee search algorithm based on multi-strategy fusion and its application
In order to solve the problems of initial population boundary clustering distribution,slow convergence speed,low accuracy and easy falling into local optimum in chimpanzee search algorithm,an improved chimpanzee optimization algorithm with multi-strategy fusion(SPWChoA)was proposed.Firstly,the modified Sine chaotic map is used to initialize the population to solve the aggregation and distribution problem of population boundaries.Secondly,the concept of linear weight factor and adaptive acceleration factor for particle swarm optimization is presented.This is coupled with the enhanced nonlinear convergence factor balancing algorithm's global search capability to quicken the algorithm's convergence and raise its convergence accuracy.Finally,sparrow elite mutation and Bernoulli chaotic mapping strategies improved by adaptive water wave factors are introduced to improve the ability of individuals to jump out of local optima.By comparing the optimization results of 23 benchmark functions and Wilcoxon rank sum statistical test,it can be seen that the SPWChoA optimization algorithm has stronger robustness and applicability.Lastly,to further demonstrate the SPWChoA optimization algorithm's superiority in handling actual optimization issues,the technique is applied to an engineering case.

modified Sine chaotic mappingnonlinear attenuation factorsparrow elite mutationBernoulli chaotic mappingWilcoxon rank-sum test

张福兴、高腾、吴泓达

展开 >

大连工业大学机械工程与自动化学院,大连 116034

改进的Sine混沌映射 非线性衰减因子 麻雀精英突变 Bernoulli混沌映射 Wilcoxon秩和检验

2025

北京航空航天大学学报
北京航空航天大学

北京航空航天大学学报

北大核心
影响因子:0.617
ISSN:1001-5965
年,卷(期):2025.51(1)