首页|基于多尺度注意力机制的RAW图像重建

基于多尺度注意力机制的RAW图像重建

扫码查看
针对传统图像信号处理(ISP)算法繁琐的问题,基于可取代ISP算法的PyNET网络模型,提出一种端到端的RAW图像重建方法Py-CBAM.通过引入高效的注意力机制,并利用该机制对原有网络的多层级多尺度结构进行重设计,实现不同尺度特征的自适应加权,以较大程度提升图像重建的性能.实验结果表明,所提方法在公开的 ZRR数据集上获得的峰值信噪比(PSNR)与PyNET方法相比提升了 0.37 dB,结构相似度(SSIM)提升了 0.001 8.将ZRR数据集和新构建的NRR数据集联合对Py-CBAM重新训练后,PSNR和SSIM分别达到 25.73 dB和 0.965 4.视觉效果上,所提方法解决了RAW图像重建时的噪声高与色彩失真、畸变等问题,增强模型在多场景不同光照环境条件下的重建能力;重建结果较为真实,视觉质量最优,在图像过曝和过暗区域视觉提升效果较为明显.
RAW image reconstruction based on multi-scale attention mechanism
Traditional image signal processing(ISP)algorithms are cumbersome.Therefore,based on the PyNET model that can replace ISP algorithms,an end-to-end RAW image reconstruction method was proposed,called Py-CBAM.This method introduced an efficient attention mechanism and used it to redesign the multi-level and multi-scale structure of the PyNET network to achieve adaptive weighting of features at different scales,so as to improve the image reconstruction performance to a large extent.The experimental results show that the peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)obtained by the proposed method on the publicly available ZRR dataset improve by 0.37 dB and 0.0018 compared with those by the PyNET method.After retraining the Py-CBAM on the ZRR dataset and the newly constructed NRR dataset,the PSNR and SSIM reach 25.73 dB and 0.965 4,respectively.Visually,the proposed method solves the problems of high noise and chromatic aberration and distortion in RAW image reconstruction.It can also enhance the reconstruction ability of the model under different lighting environment conditions in multiple scenes.The reconstruction results are more realistic and have better visual quality,especially in the overexposed and dark areas of the image.

image signal processingimage reconstructionaugmentation networkattention mechanismdeep learning

张科、刘昱、胡凯

展开 >

天津大学微电子学院,天津 300072

天津大学浙江国际创新设计与智造研究院,绍兴 312000

图像信号处理 图像重建 增强网络 注意力机制 深度学习

2025

北京航空航天大学学报
北京航空航天大学

北京航空航天大学学报

北大核心
影响因子:0.617
ISSN:1001-5965
年,卷(期):2025.51(1)