首页|基于改进YOLOv5s算法的检测实验室监管云平台

基于改进YOLOv5s算法的检测实验室监管云平台

扫码查看
为研发一种核心智能算法,以监管云平台系统,实现工程试验室检测过程的智能监管.以混凝土试块抗压试验为例,采用改进的YOLOv5s算法对试验室全程影像进行实时识别,确保混凝土试块全过程的无缝监控.通过建立YOLOv5s的混凝土试块目标检测模型,并在网络中添加SE通道注意力模块,该模型能够实时监测混凝土试块的位置和状态,应对实验室环境中的复杂情况,从而显著提升智能识别的准确性和鲁棒性.试验结果表明,改进的YOLOv5s算法在混凝土试块识别方面表现出色,各项性能指标得到显著提升.通过智能算法与云平台技术的结合,该研究为实验室检测活动提供了一种先进的监管解决方案,实现了检测全流程的智能监管.这一方法确保了检测结果的客观性和可靠性,为工程检测质量的智能监管提供了新途径.
Monitoring Cloud Platform for Testing Laboratories Based on Improved YOLOv5s Algorithm
In order to develop a core intelligent algorithm to supervise the cloud platform system the intelligent supervision of the testing process in engineering laboratories.Taking the concrete block compression test as an example,the improved YOLO(You Only Look Once)v5s algorithm is used to recognize the whole laboratory image in real time to ensure the seamless monitoring of the whole process of concrete test block.By establishing the concrete test block target detection model of YOLOv5s and adding the SE(Squeeze-and-excitation)channel attention module to the network,the model is able to monitor the position and state of the concrete test block in real time and cope with the complexity of the laboratory environment,which significantly improves the accuracy and robustness of the intelligent recognition.The experimental results show that the improved YOLOv5s algorithm performs well in concrete specimen block recognition,and the performance indexes are significantly improved.Through the combination of intelligent algorithms and cloud platform technology,an advanced supervision solution for laboratory testing activities is provided,realizing the intelligent supervision of the whole testing process.This method ensures the objectivity and reliability of the testing results and a new way for the intelligent supervision of engineering testing quality is provided.

concrete testingobject detectionYOLOv5sattention mechanismintelligent supervision

黄春程、祝磊、马德云、龚郁杰

展开 >

北京建筑大学 土木与交通工程学院,北京 100044

中国建筑标准设计研究院有限公司,北京 100048

混凝土检测 目标检测 YOLOv5s 注意力机制 智能监管

"十四五"国家重点研发计划课题项目

2022YFF0606901

2024

北京建筑大学学报
北京建筑工程学院

北京建筑大学学报

影响因子:0.562
ISSN:1004-6011
年,卷(期):2024.40(4)
  • 10