首页|基于改进YOLOv5s的交通场景密集目标检测算法

基于改进YOLOv5s的交通场景密集目标检测算法

扫码查看
道路交通场景下目标检测任务往往由于物体相互遮挡、远处目标像素低等原因,导致检测精度低,出现漏检、误检等问题,为此提出一种改进YOLOv5 s的交通场景密集目标检测模型YOLOv5-ECFK.首先,将边界框回归损失函数由CIOU替换为EIOU,提高模型评估预测框的准确性;其次,在主体网络结构中融合CBAM注意力机制,帮助网络在具有密集对象场景中找到注意力区域;然后,通过增加小尺度特征融合层和检测层,提升模型小目标检测精度;最后,使用K-means++算法重新聚类锚框,使生成的锚框更适合实验数据集,提升算法整体性能.实验数据集由公开数据集Rope3D和自制数据集联合组成.实验结果表明,最终改进算法YOLOv5-ECFK相比于YOLOv5s、mAP@0.5/%和mAP@0.5:0.95/%分别提升3.4%、2.7%,Precision和Recall分别提升3.5%、1.3%,最终改进算法对道路交通场景下的密集目标具有优秀的检测效果.
Dense Object Detection Algorithm in Traffic Scenes Based on Improved YOLOv5s
The object detection tasks in road traffic scenarios often involve blocking each other and the pixels of distant objects are low,resulting in low object detection accuracy,missed detection,false detection and other problems.Therefore,an improved YOLOv5-ECFK model for intensive object detection in traffic scenarios is proposed.Firstly,the boundary box regression loss function is replaced by CIOU with EIOU to improve the accuracy of the model evaluation prediction frame.Secondly,CBAM attention mechanism is integrated into the main network structure to help the network find the attention region in the scene with dense objects.Then,the detection accuracy of the model is improved by adding the small-scale feature fusion layer and detection layer.Finally,the K-Means++algorithm is used to re-cluster the anchor frame,so that the generated anchor frame is more suitable for the experimental data set,and the overall performance of the algorithm is improved.The experimental data set is composed of the open data set Rope3D and the self-made data set.Experimental results show that compared with YOLOv5s,mAP@0.5/%and mAP@0.5:0.95/%,the final improved algorithm YOLOv5-ECFK are improved by 3.4%and 2.7%,respectively,and the Precision and Recall are improved by 3.5%and 1.3%,respectively.Finally,the improved algorithm has excellent detection effect on dense objects in road traffic scenarios.

object detectiondense traffic sceneEIOUCBAMK-means++

王志涛、张瑞菊、王坚、赵佳星、刘严涛

展开 >

北京建筑大学 测绘与城市空间信息学院,北京 100044

目标检测 密集交通场景 EIOU CBAM K-means++

2024

北京建筑大学学报
北京建筑工程学院

北京建筑大学学报

影响因子:0.562
ISSN:1004-6011
年,卷(期):2024.40(5)