首页|一种基于统计流形的聚类算法

一种基于统计流形的聚类算法

扫码查看
考虑数据点之间局部统计性质的差异,结合K平均算法提出一种基于统计流形的聚类算法.通过计算数据点邻域的均值和协方差,将原始数据点云映射到正态分布族流形中,成为参数点云.在正态分布族流形上构造不同的度量结构,分别应用K平均方法,对参数点云进行聚类,从而将对应的原始数据分类.此算法可以应用到点云去噪.采用基于不同差异函数的算法,对含高密度噪声的点云去噪,并给出模拟仿真结果.仿真结果表明,采用KL散度作为差异函数的算法有较好的去噪效果,体现出该算法在去噪应用中的潜力.
A Clustering Algorithm Based on Statistical Manifold

孙华飞、宋扬、罗翼昊、孙福鹏

展开 >

北京理工大学数学与统计学院,北京 100081

聚类 点云去噪 指数族流形

2021

北京理工大学学报
北京理工大学

北京理工大学学报

CSTPCDCSCD北大核心
影响因子:0.609
ISSN:1001-0645
年,卷(期):2021.41(2)
  • 2
  • 1