首页|复杂越野场景无人履带平台3D语义占据预测方法

复杂越野场景无人履带平台3D语义占据预测方法

扫码查看
为了理解和处理复杂越野场景中环境要素形状不规则、地形多变及路面属性复杂等问题,提出了一种基于多模态融合感知的 3D语义占据预测方法.首先,基于图像和激光雷达融合网络获取初始 3D语义标签;然后,对越野场景稀疏点云采用贝叶斯稠密化算法补全 3D语义占据标签;最后,生成包含复杂环境要素大小、位置和语义信息的 3D语义占据栅格地图.试验结果表明,该方法能够有效地提取和表示复杂越野环境中的 3D信息,为复杂越野环境下无人履带平台的路径规划提供了更加准确和丰富的先验信息.
3D Semantic Occupancy Prediction for Unmanned Tracked Vehicles in Complex Off-Road Environments
A novel three-dimensional(3D)semantic occupancy prediction method was proposed to analyze and handle the complex off-road environments characterized with diverse geometric,terrain,and road surface fea-tures.Firstly,a 3D semantic label was achieved based on a unified framework with the integration of image and LiDAR data.And then,the 3D semantic and occupancy labels were enriched with the Bayesian densification al-gorithm for the sparse point clouds in off-road scene.Finally,a 3D semantic occupancy grid map was generated,incorporating the size,position,and semantic attributes of environment objects.Experiment results show that the proposed method can extract and represent effectively the 3D environmental information in challenging off-road scenarios,providing a robust foundation for enhanced planning and decision-making in unmanned tracked vehicles.

unmanned tracked vehiclemultimodal fusion3D semantic occupancy prediction

陈慧岩、司璐璐、王旭睿、王文硕

展开 >

北京理工大学 机械与车辆学院,北京 100081

无人履带平台 多模态融合 3D语义占据预测

2025

北京理工大学学报
北京理工大学

北京理工大学学报

北大核心
影响因子:0.609
ISSN:1001-0645
年,卷(期):2025.45(1)