首页|基于前馈补偿的轮腿式平台多任务复合运动解耦控制

基于前馈补偿的轮腿式平台多任务复合运动解耦控制

扫码查看
轮腿式平台在执行复杂作战环境载运任务时,由于其动态协调腿部与车轮运动是复杂耦合的,其行驶速度的稳定性、位姿控制的精确性都十分困难.文中基于轮腿式平台通过有限高度场景的动态协调任务,提出了一种基于前馈补偿的多任务优先级复合运动解耦控制框架.首先,分别建立了关节和车轮动力学模型,降低模型复杂度;然后,搭建了基于任务优先级的前馈关节力矩解算,叠加轮端前馈交互力和反馈控制力矩降低实时位姿调整对质心速度的影响;最后,采用转速闭环PI控制器,并引入车轮滚动阻力实现车轮速度到质心速度的有效传递.仿真结果表明,所提出控制方法在受限场景运动过程中平台质心速度最大跟踪误差小于 3%,为轮腿式平台复杂环境下执行任务提供了可行控制框架.
Decoupling Control of Multi-Task Compound Motion for Wheeled-Legged Platforms Based on Feedforward Compensation
To solve the problems of speed stability and posture control accuracy on unmanned reconnaissance and transport platforms working for maneuvering transportation in complex combat environments,a decoupling control framework of multi-task priority compound motion was proposed based on feedforward compensation to coordinate dynamically the tasks of wheeled-legged platform with limited-height scenarios.Firstly,joint and wheel dynamics models were established separately to reduce model complexity.Then,a feedforward joint torque calculation was developed based on task priorities,and the feedforward interaction forces at the wheel and feedback control torques were superimposed to minimize the impact of real-time posture adjustments on the ve-locity of the center of mass(COM).Finally,a speed-closed-loop PI controller was adopted,and wheel rolling resistance was introduced to achieve effective transmission from wheel speed to the COM velocity.Simulation results show that the maximum tracking error of the platform's center COM velocity with the proposed control method can be less than 3%during motion in constrained scenarios,providing a feasible control framework for wheeled-legged platforms used in complex environments.

wheeled-legged platformfeedforward compensationtask prioritydecoupling control

刘辉、马嘉勇、杨海洋、郝伟赫

展开 >

北京理工大学 机械与车辆学院,北京 100081

北京理工大学 前沿技术研究院,山东,济南 250307

轮腿式平台 前馈补偿 任务优先级 解耦控制

2025

北京理工大学学报
北京理工大学

北京理工大学学报

北大核心
影响因子:0.609
ISSN:1001-0645
年,卷(期):2025.45(1)