首页|Approximation of the Cubic Functional Equations in Lipschitz Spaces

Approximation of the Cubic Functional Equations in Lipschitz Spaces

扫码查看
Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x?y)+12 f (x)?f (2x+y)?f (2x?y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x?y)+12 f (x)?f (2x+y)?f (2x?y)=0 on Lipschitz spaces.

Cubic functional equationLipschitz spacestability

A Ebadian、N Ghobadipour、I Nikoufar、and M Eshaghi Gordji

展开 >

Department of Mathematics, Payame Noor University, Iran

Department of Mathematics, Urmia University, Urmia, Iran

Department of Mathematics, Semnan University, P. 0. Box 35195-363, Semnan, Iran

2014

分析、理论与应用(英文版)
南京大学

分析、理论与应用(英文版)

CSCD
影响因子:0.111
ISSN:1672-4070
年,卷(期):2014.(4)
  • 1