首页|基于GF-2的乔木生物量估测模型研究

基于GF-2的乔木生物量估测模型研究

扫码查看
以福建省将乐林场为研究区,使用野外实测样地数据,结合福建省二类调查数据,获取了共192个样地的生物量数据,其中杉木纯林112个,马尾松纯林80个.对覆盖研究区的2景GF-2影像进行预处理,提取光谱信息、植被指数、纹理特征及地形因子,筛选与样地生物量相关性较高的因子作为建模的自变量,采用支持向量机、随机森林及多元逐步回归3种方法分别建立了杉木和马尾松生物量模型.结果表明:支持向量机、随机森林模型拟合效果均比多元逐步回归模型好,其中随机森林模型决定系数R2最高,2种样地的R2分别为0.65和0.72,估计精度也最高,分别为65.28%和76.82%;杉木样地3种模型的均方根误差分别为64.27、48.16和77.03,马尾松样地3种模型的均方根误差分别为54.79、48.18和65.63,其中随机森林模型的最低.在3种模型中,随机森林模型为乔木生物量的最优模型.
Estimation of tree biomass with GF-2

丁志丹、孙玉军、孙钊

展开 >

北京林业大学森林资源和环境管理国家林业和草原局重点开放性实验室,北京,100083

乔木生物量 GF-2 支持向量机 随机森林 多元逐步回归

林业科学技术推广资助项目

[2019]06

2021

北京师范大学学报(自然科学版)
北京师范大学

北京师范大学学报(自然科学版)

CSTPCDCSCD北大核心
影响因子:0.505
ISSN:0476-0301
年,卷(期):2021.57(1)
  • 7
  • 14