北京师范大学学报(自然科学版)2024,Vol.60Issue(2) :169-175.DOI:10.12202/j.0476-0301.2023239

非厄密系统哈密顿量的本征值和本征态

The eigenvalue and eigenvector of a non-Hermitian Hamiltonian

范迎迎 曹亲亲 孙宝玺
北京师范大学学报(自然科学版)2024,Vol.60Issue(2) :169-175.DOI:10.12202/j.0476-0301.2023239

非厄密系统哈密顿量的本征值和本征态

The eigenvalue and eigenvector of a non-Hermitian Hamiltonian

范迎迎 1曹亲亲 1孙宝玺1
扫码查看

作者信息

  • 1. 北京工业大学物理与光电工程学院,北京
  • 折叠

摘要

利用扭结哈密顿算子构造了非厄密哈密顿量,探讨了非厄密哈密顿量本征值和本征态的性质.结果表明:非厄密哈密顿量的能量本征值为复数,且随着模型参数和角度的变化而变化,可能会出现奇异点;通过理论推导可确定本征值奇异点的位置和个数.非厄密哈密顿量本征矢量之间的正交归一性呈现与传统量子力学完全不同的特点;考虑基尔霍夫电流定律,用电阻、电感及电容构造电路,可获得非厄密哈密顿量.

Abstract

The non-Hermitian Hamiltonian is constructed with the knot operators,and then the eigenvalue and corresponding eigenvector are evaluated respectively.It manifests that the eigenvalue of a non-Hermitian Hamiltonian is a complex number,and changes with the angle and the tunable parameter.The number and position of exceptional points are obtained theoretically.Moreover,the biorthogonal normalization of the right and left eigenvectors of the non-Hermitian Hamiltonian is discussed,which is different from the case in the traditional quantum mechanics.Finally,according to the Kirchhoff's current law,the non-Hermitian Hamiltonian is realized experimentally in an electric circuit with resistor,inductor and capacitor components.

关键词

非厄密哈密顿量/扭结哈密顿算子/奇异点/基尔霍夫电流定律/RLC电路

Key words

non-Hermitian Hamiltonian/knots Hermitian operator/exceptional point/Kirchhoff's current law/RLC circuit

引用本文复制引用

基金项目

国家自然科学基金(11874002)

出版年

2024
北京师范大学学报(自然科学版)
北京师范大学

北京师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.505
ISSN:0476-0301
段落导航相关论文