首页|基于香农信息熵的印度土地利用格局演化与驱动因子研究

基于香农信息熵的印度土地利用格局演化与驱动因子研究

扫码查看
引入香农(Shannon)信息熵,从统计、结构、拓扑与专题4个方面,构建土地利用香农信息熵测度指标体系,挖掘印度土地利用格局与时空演化特征,并分析其驱动因子.结果表明:1)印度土地利用类性多样性先降后升,结构与拓扑复杂性一致水平较低;专题复杂性不断下降,近20 a来印度保持着以耕地为主的农业大国特色,土地利用变化程度不高.2)各用地斑块信息熵值空间自相关特征显著,表明城市扩张速度的非均衡性和农业发展的环境依赖性.3)坡度、海拔、人口密度驱动了印度土地利用变化.本研究丰富了空间复杂性研究,有望为发展中国家的土地规划与管理提供借鉴.
Evolution pattern of land use and driving factors in India based on Shannon information entropy
India is one of the fastest-growing emerging economies in the world and one of the world's top two most populous countries.The fast-growing economy has also driven changes in land use patterns,so that India now faces severe land degradation problems.In this paper we introduce Shannon's information entropy,to construct land use Shannon's information entropy measurement index system from four aspects(statistics,structure,topology and theme),to excavate land use pattern and spatiotemporal evolution characteristics in India,and to analyze relevant driving factors.Land use diversity in India decreases first and then rises;structural and topological complexity has always been at a low level.Thematic complexity is constantly decreasing,so that in the past 20 years,India maintains its agricultural characteristics of mainly arable land.Thematic complexity has been decreasing,India has maintained the characteristics of a largely agricultural country dominated by arable land in the past 20 years,the degree of land use change is not high.Spatial autocorrelation of information entropy values of each land use patch is significant,with uneven rate of urban expansion,and environmental dependence on agricultural development.The slope,elevation,and population density all have driven land use changes in India.This work enriches the study of spatial complexity and provides lessons for land planning and management in developing countries.

land useinformation entropytri-clusteringdriving factors

邓雯、张红、王艺、吴智伟

展开 >

西南交通大学地球科学与工程学院,四川成都

华东师范大学地理科学学院,全球创新与发展研究院,上海

土地利用 信息熵 三向聚类 驱动因子

2024

北京师范大学学报(自然科学版)
北京师范大学

北京师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.505
ISSN:0476-0301
年,卷(期):2024.60(4)