首页|局部有限图上非线性偏微分方程解的存在性

局部有限图上非线性偏微分方程解的存在性

扫码查看
运用从局部到全局的变分方法,将二阶方程的研究结果推广至高阶方程,并证明了局部有限图上高阶Schrödinger方程和Kazdan-Warner方程解的存在性;运用Nehari流形与高维格点图重排理论,证明了一类非线性偏微分方程重排解的存在性,并将约束变分问题的研究结果推广至无约束变分问题。
The existence of solutions for nonlinear partial differential equations on locally finite graphs
In this paper,the variational method from local to global is used to generate results of second-order equations to higher-order equations,the existence of solutions for the higher-order Schrödinger equation and Kazdan-Warner equation on locally finite graphs is proved.The existence of rearrangement solutions for a class of nonlinear partial differential equations is proved using the Nehari manifold and rearrangement theory on higher-dimensional lattice graphs.Results of constrained variational problems are generalized to unconstrained variational problems.

locally finite graphhigher-order partial differential equationsvariational methodlattice graphSchwarz rearrangement

李雪、田雨陆、赵亮

展开 >

北京师范大学数学科学学院,北京

局部有限图 高阶偏微分方程 变分法 格点图 Schwarz重排

2024

北京师范大学学报(自然科学版)
北京师范大学

北京师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.505
ISSN:0476-0301
年,卷(期):2024.60(6)