首页|自动可解释机器学习滑坡易发性评价模型

自动可解释机器学习滑坡易发性评价模型

扫码查看
模型训练的复杂性和预测结果的难以解释极大限制了机器学习在滑坡易发性评价领域的发展。本研究基于SHAP-XGBoost算法构建综合可解释的滑坡易发性评价模型,将"可解释的人工智能(explainable artificial intelligence,XAI)"和"自动机器学习(automated machine learning,AutoML)"引入滑坡易发性评价研究,实现复杂模型训练、超参数优化、滑坡易发性评价制图和模型解释的自动化运行。该模型以网格单元和斜坡单元2种尺度在三峡库区奉节县的测试结果表明:模型实现了可解释的自动化滑坡易发性评价,具有较高的预测精度;基于网格单元与斜坡单元构建的模型测试集AUC值为0。875和0。873,准确率、精确度、召回率与F1分数值均远>0。5;SHAP算法可从全局与局部2个方面对模型进行解释,有助于理解模型决策成因与滑坡灾害的发生规律。此外,SHAP算法亦可解释单个评价单元的预测结果,具有较高的可信度。研究结果为自动机器学习与模型的可解释研究提供重要参考。
An automated and explainable machine learning model for landslide susceptibility mapping
Complexity of model training and difficulty in explaining prediction results greatly restrict development of machine learning in landslide susceptibility assessment.In this study a comprehensive explainable landslide susceptibility assessment model is constructed based on SHAP-XGBoost algorithm,introducing"Explai-nable Artificial Intelligence(XAI)"and"Automated Machine Learning(AutoML)"into landslide susceptibility assessment.This model achieves automated operation of complex model training,hyperparameter optimization,landslide susceptibility assessment mapping,and model explanation.Testing in Fengjie county in Three Gorges Reservoir Area on two scales(grid units,and slope units)demonstrates explainable automated landslide susceptibility assessment with high predictive accuracy.The model based on grid and slope units achieves AUC values of 0.875 and 0.873 respectively,with accuracy,precision,recall,and Fl scores all significantly higher than 0.5.SHAP algorithm provides explanations for the model from both global and local perspectives,facilitating understanding of distribution characteristics of causative factors in model building and occurrence patterns of landslide disasters.SHAP algorithm can explain prediction results of individual evaluation units with high credibility.This work provides some reference for automated machine learning and explainable models.

AutoMLExplainableSHAPlandslide susceptibility mapping

马祥龙、文海家、张廷斌、孙德亮、潘明辰

展开 >

成都理工大学地球科学学院,四川成都

重庆大学山地城镇建设与新技术教育部重点实验室,重庆

成都理工大学国家环境保护水土污染协同控制与联合修复重点实验室,四川成都

重庆师范大学地理与旅游学院,重庆

重庆师范大学地理信息系统应用研究重庆市高校重点实验室,重庆

展开 >

AutoML Explainable SHAP 滑坡易发性区划

2024

北京师范大学学报(自然科学版)
北京师范大学

北京师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.505
ISSN:0476-0301
年,卷(期):2024.60(6)