首页|2D-3D医学图像配准临床数据集标定结果的分析与评价

2D-3D医学图像配准临床数据集标定结果的分析与评价

扫码查看
目的 构建采自临床的 2D-3D医学图像配准数据集,是实现各种学习算法应用于实际医疗的重要环节.然而临床数据的获取过程中存在多种不确定因素,致使数据集的标定结果需要分析和评价.本文对采自胸主动脉腔内修复术的一组X线和CT图像的几组标定数据进行分析和评价,并确定正确标定结果.方法 分别采用相似性度量法和投影距离误差法对标定结果进行分析和评价.选用相似性准则,计算CT图像生成的二维数字放射重建图像和X线图像的相似性,相似程度越高,对应的标定值越接近真实值.读取X线图像中的标记物影像位置作为参考位置;将计算得到的CT图像中标记物位置在X线图像上投影,得到投影位置;计算参考位置和投影位置的距离,距离值越小,对应的标定值越接近真实值.结果 提供的几组标定数据,在比较数字放射重建图像和X线图像相似性方面,相似度接近,没有明显指向性;而投影距离误差法的分析结果指向性明显,能够定量描述标定结果的优劣.主要原因在于各组标定值之间差别不突出;生成的数字放射重建图像和X线图像之间模态差异较大等.结论 投影距离误差法是评价2D-3D医学图像配准数据集标定结果的有效手段.另外,若提供的标定结果计算数据差异明显,或者可以提供高质量的数字放射重建图像时,相似性度量法也是评价标定结果的可选途径.
Analysis and evaluation of the calibration of 2D-3D medical image registration clinical datasets
Objective Constructing 2D-3D medical image registration datasets using clinical materials is important for various learning algorithms to be applied in medical treatment.The dataset's calibration needs to be analyzed and evaluated because of various uncertainties in the acquisition process of clinical data.In the paper,several sets of calibration values between a group of X-ray images and CT image of a patient in thoracic endovascular aortic repair were analyzed and evaluated,and the calibration was determined finally.Methods The calibration values were analyzed and evaluated by similarity metric and projection distance error,respectively.The similarity criterion was used to calculate the similarity between the 2D Digitally reconstructed radiograph(DDR)generated from the CT image and the X-ray image.The higher the similarity,the closer the corresponding calibration value was to the true value.After reading the markers'position in the X-ray image as reference position,and obtaining projection position by projecting the markers'positions calculated in the CT image,the distance between the reference position and the projected position,projection distance error of the markers,was calculated.The smaller the distance error,the closer the corresponding calibration value was to the true value.Results The calculations for several sets of calibration values had no significant difference in comparing the similarity between DRRs and X-ray images,whereas the calculations of the projected distance errors had obvious difference and were able to quantitatively describe the advantages and disadvantages of the calibrations.The main reason was that the calibration values of each group were close,and mode difference between the DRR images and X-ray images was significant.Conclusions It can be concluded that the projected distance error evaluation is an effective means for evaluating the calibrations of 2D-3D medical image registration datasets;in addition,the similarity metric evaluation is also an effective way of evaluating the calibrations if the difference of the calibrations provided is obvious,or high-quality DRRs can be provided.

dataset calibrationclinical datasetevaluationsimilarity metricprojection distance error

魏萍、王顺顺、王珠、舒丽霞

展开 >

中国石油大学(北京)信息科学与工程学院(北京 102249)

首都医科大学附属北京安贞医院-北京市心肺血管疾病研究所(北京 100029)

数据集标定 临床数据集 评价 相似性度量 投影距离误差

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(1)
  • 1