首页|基于CT影像的早期肺腺癌病理类型预测方法研究进展

基于CT影像的早期肺腺癌病理类型预测方法研究进展

扫码查看
肺腺癌是非小细胞肺癌中最常见的类型.由于肺腺癌发生早期并没有明显的临床症状,多数患者发现时已处于晚期,晚期肺腺癌患者的预后情况极其不理想.早发现、早诊断和早治疗是提升患者生存率最有效的措施.根据癌细胞对周围组织浸润程度的不同,可将早期肺腺癌分为微浸润性腺癌和浸润性腺癌,同时腺体前驱病变也需长期观察随访,以防进一步发展恶化.不同病理类型的早期肺腺癌术后五年无病生存率存在很大差异,准确预测肺腺癌病理类型能够辅助医师更好地制定治疗方案,进一步改善病患的预后.早期肺腺癌与磨玻璃肺结节(ground-glass nodule,GGN)密切相关,CT凭借无创和高分辨率的优势成为了观察GGN最主要的影像方法.现有的早期肺腺癌病理类型预测研究主要围绕人工智能技术开展:传统影像组学基于计算机高通量提取和筛选GGN的定量特征来构建分类模型;而深度学习方法则自动提取GGN的深层特征并学习其与类别之间的隐含关系,以完成类别预测任务.目前国内外研究者基于GGN的CT影像以及影像组学和深度学习模型已发表了大量的早期肺腺癌病理组织类型预测的文献.本文主要就GGN的CT影像学特征、影像组学特征及深度学习方法在预测早期肺腺癌组织学类型方面的研究进展予以综述,以期为相关研究者提供有价值的参考.
Research progresses of pathological type prediction of early lung adenocarcinoma based on CT images
Lung adenocarcinoma is the most common type of non-small cell lung cancer.Most patients with lung adenocarcinoma have unobvious clinical manifestations in the early stage of cancer,they are already at an advanced stage when they are discovered,and the prognosis of advanced lung adenocarcinoma patients is extremely unsatisfactory.Therefore,early detection,early diagnosis,and early treatment are the most effective measures to improve the survival rate of patients.Early lung adenocarcinoma can be divided into minimally invasive adenocarcinoma and invasive adenocarcinoma according to the degree of infiltration of cancer cells into surrounding tissues.Meanwhile,glandular prodromal lesions also need long-term observation and follow-up to prevent further development and deterioration.The five-year disease-free survival rate of early lung adenocarcinoma varies greatly with different pathological types.Correctly predicting the type of early lung adenocarcinoma can help radiologists make better treatment plans and further improve the prognosis of patients.Early lung adenocarcinoma is closely related to ground-glass nodule(GGN).CT has become the most important imaging method to observe GGN with the advantages of non-invasive and high resolution.Existing studies on the prediction of pathological types of early lung adenocarcinoma mainly focus on artificial intelligence technology:traditional radiomics builds classification models based on high-throughput extraction and screening of GGN quantitative features;the deep learning method automatically extracts the deep features of GGN and learns the implicit relationship between GGN and category to complete the category prediction task.At present,researchers at home and abroad have published a lot of literature on the prediction of pathological tissue types of early lung adenocarcinoma based on GGN CT images,radiomics and deep learning models.This article mainly reviews the research progress of GGN CT imaging features,radiomics features,and deep learning methods in predicting the histological types of early lung adenocarcinoma,in order to provide a valuable reference for related researchers.

ground-glass pulmonary nodulesearly lung adenocarcinomaradiomicsdeep learningpathological types

苏悦、龚敬、贾守强、聂生东

展开 >

上海理工大学健康科学与工程学院(上海 200093)

复旦大学附属肿瘤医院放射科(上海 200032)

山东第一医科大学附属济南市人民医院影像科(济南 271100)

磨玻璃肺结节 早期肺腺癌 影像组学 深度学习 病理类型

国家自然科学基金重点项目上海市自然科学基金项目上海市抗癌协会雏鹰计划上海市徐汇区人工智能医疗院地合作项目

8183005220ZR143830021ZR14142002021-009

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(1)
  • 4