首页|一种新的术中X线与术前CT图像配准方法

一种新的术中X线与术前CT图像配准方法

扫码查看
目的 本研究旨在配准胸主动脉血管内修复术(thoracic endovascular aortic repair,TEVAR)术中X线与术前CT图像,为TEVAR支架植入提供精确安全的导航.然而,现有配准算法存在无法有效弥合投影CT图像生成的数字重建影像(digitally reconstructed radiography,DRR)与X线图像之间的域间差异和难以获得图像分割标签的问题.因此,需要提出新的方法来改善这一问题.方法 本文提出了一种新的配准框架,该框架结合了基于生成对抗网络(generative adversarial network,GAN)的域自适应网络和基于Transformer的配准网络.基于GAN的域自适应网络将X线图像的风格迁移到DRR图像上,使两者在图像风格上更接近.基于Transformer的配准网络采用CNN与跨模态变换器(cross-modality transformer,CMT)相结合的模式,直接配准X线与CT图像,无需进行图像分割.结果 本文在208对标定的TEVAR术中X线与CT图像对上对新的配准方法进行了验证.与其他域适应方法相比,本文所采用的CycleGAN网络作为风格转换模块,有效减小了DRR图像与X线图像之间的域间差异.消融实验结果进一步证实,配准网络中的全局局部感知模块(global-local perception module,GLPM)对提高配准精度具有明显作用,而空间缩减(spatial reduction,SR)则有效缩短了配准时间.通过对比现有方法和本文方法在真实患者X线与CT图像对上的配准效果,本文的方法在配准精度和成功率方面均表现出最佳性能.结论 本文提出的新的X线与CT图像配准方法有效克服了现有方法存在的域间差异以及难以获得分割标签的问题.
A novel approach for intraoperative X-ray and preoperative CT image registration
Objective The aim of this study is to register X-ray and preoperative CT images in thoracic endovascular aortic repair (TEVAR) procedures to provide accurate and safe navigation for the implantation of TEVAR stents. However,existing registration algorithms face challenges in effectively bridging the domain gap between digitally reconstructed radiograph (DRR) images generated from CT and X-ray images,as well as the difficulty in obtaining image segmentation labels. Therefore,it is necessary to propose a new method to address these issues. Methods We propose a novel registration framework that combines a domain-adaptive network based on generative adversarial network (GAN) and a registration network based on Transformer. The GAN-based domain-adaptive network transfers the style of X-ray images onto DRR images,making them more similar in terms of image style. The registration network based on Transformer adopts a combination of CNN and cross modal transformer (CMT) , allowing direct registration of X-ray and CT images without the need for image segmentation. Results We validate the new registration method on 208 pairs of preoperative X-ray and CT images obtained from patients who underwent TEVAR. Compared to other domain adaptation methods,our use of CycleGAN as the style transfer module effectively reduces the inter-domain discrepancy between DRR images and X-ray images. Further results from ablation experiments demonstrate the significant role of the global-local perception module (GLPM) in improving registration accuracy and the effectiveness of the spatial reduction (SR) block in reducing registration time. As comparing the registration performance of our method with existing methods on X-ray and CT image pairs of real patients,our method demonstrates superior performance in terms of registration accuracy and success rate. Conclusions Our proposed novel method for X-ray and CT image registration effectively overcomes the domain gap and difficulty in obtaining segmentation labels faced by existing methods.

X-ray imageCT imageregistrationdomain adaptationcross-modality transformer

崔家礼、王杰、郭曦、陈彧、舒丽霞

展开 >

北方工业大学信息学院 北京 100144

首都医科大学附属北京安贞医院大血管中心 北京100029

首都医科大学附属北京安贞医院/北京市心肺血管疾病研究所 北京 100029

X线图像 CT图像 配准 域自适应 跨模态变换器

北京市公益性科研院所行业定额项目

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(2)
  • 20