首页|基于符号相位转移熵的抑郁脑电信号分析

基于符号相位转移熵的抑郁脑电信号分析

扫码查看
目的 抑郁症是现代社会的主要精神疾病之一,以连续、长期的心情低落为主要临床特征,可能严重影响人的行为能力.如何尽早对抑郁症患者进行干预治疗现已成为临床医学的重点课题.本文通过探索抑郁脑电的耦合特征,从而推断系统间信息流的方向和强度,为抑郁症患者的临床诊断提供新的方向.方法 通过符号相位转移熵对抑郁症患者和健康人的脑电数据进行非线性分析.通过对抑郁脑电和健康人脑电对称脑区脑电信号的加窗处理,计算符号相位转移熵、符号转移熵值,并对所得数据进行t检验.最后分析实验结果,并和符号转移熵进行对比性分析.结果 T7与T8导联上抑郁脑电的符号相位转移熵和健康脑电有显著差别(P<0.05).因此,相比于符号转移熵,利用符号相位转移熵法进行实验分析所需的数据量更少、转移熵值更稳定、可更有效地识别抑郁脑电的耦合特征.结论 在对左右对称脑区导联分析的情况下,符号相位转移熵比符号转移熵效果好,能够有效分析抑郁脑电的耦合特征,研究结果有助于抑郁脑电病理特征的研究.
Analysis of depressive EEG signals based on symbolic phase transfer entropy
Objective Depression is the main cause of disability worldwide and a major contributor to the global burden of diseases. The effects of depression may be long-term or recurrent,and can greatly affect a person's function and ability to live a meaningful life. Depression,characterized by continuous and long-term depression,is the most important type of mental illness in modern people. Nonlinear analysis of EEG data from depression patients and healthy individuals is conducted through symbol phase transfer entropy, exploring the coupling characteristics of depression EEG and inferring the direction and intensity of information flow between systems,providing a new direction for clinical diagnosis of depression patients. Methods By introducing phase into the time series,symbol phase transfer entropy is achieved. Then,the symmetric EEG signals of depression and healthy individuals are windowed and processed to calculate the symbol phase transfer entropy and symbol transfer entropy values. The obtained data are subjected to a t-test,and the experimental results are analyzed and compared with the symbol transfer entropy. Results The symbol phase transfer entropy only requires a small amount of data to obtain a relatively stable transfer entropy value. The statistical results show that there is a significant difference (P<0. 05) between the symbol phase transfer entropy of depression EEG on leads T7 and T8 and healthy EEG. In contrast, the symbol transfer entropy method cannot effectively identify the coupling characteristics of depression EEG. Conclusions In the analysis of left and right symmetric brain region leads, symbol phase transfer entropy is more effective than symbol transfer entropy, and can effectively analyze the coupling characteristics of depressive EEG. The results are helpful for the study of pathological characteristics of depressive EEG.

EEGdepressionsymbolic phase transfer entropysymbolic transfer entropysymbolization

张钱鑫、王琼、朱书眉、乙万义、王俊

展开 >

南京邮电大学通信与信息工程学院 南京 210009

南京邮电大学地理与生物信息学院 南京 210023

脑电图 抑郁症 符号相位转移熵 符号转移熵 符号化

山东省生物物理重点实验室开放课题

TK221003

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(2)
  • 28