首页|融合多尺度注意力的脊柱侧弯Cobb角自动估计算法

融合多尺度注意力的脊柱侧弯Cobb角自动估计算法

扫码查看
目的 青少年特发性脊柱侧弯(adolescent idiopathic scoliosis,AIS)是危害青少年健康的常见疾病之一.临床上,X线图像Cobb角测量法是评估患者脊柱侧凸严重程度的"金标准".由于X线图像中肋骨和骨盆阴影重叠以及椎骨形态差异等因素影响,人工测量在寻找关键点时步骤复杂且耗时长,快速且准确的Cobb角自动测量方法具有重要临床应用价值.现有深度学习方法中基于分割的方法易受图像质量影响;基于关键点检测方法过于关注局部特征提取导致定位不准确等问题.为此,本文提出了一种以椎骨为中心的标志点检测方法,来实现脊柱侧弯Cobb角自动估计算法.方法 构建一种基于融合多尺度和注意力机制M型椎骨检测网络(multi-scale attention M-shaped network,MSAM-Net).首先,使用多尺度金字塔拆分注意力(multi-scale pyramids squeeze attention,MPSA)模块和注意力特征融合(attentional feature fusion,AFF)模块提取椎骨特征和上下文信息,然后,根据椎体中心和角偏移量定位4个角标志点,以在脊柱侧弯评估任务中提高椎骨标志点检测的性能,进而实现近胸段、主胸段和胸腰段曲线的Cobb角估计.结果 为了评估Cobb角估计与真实侧弯角度之间的偏差程度,本研究算法基于AASCE MICCAI 2019挑战赛数据集,使用4种指标对Cobb角精度进行评估,分别是对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)、欧氏距离(Euclidean distance,ED)、曼哈顿距离(Manhattan distance,MD)和切比雪夫距离(Chebyshev distance,CD).测试得到SMAPE为9.39%,ED为4.18;MD为5.92;CD为5.34.与基于分割和检测的5种深度学习方法进行对比,实现更好的Cobb角测量结果.结论 本研究可以准确识别和定位X线图像中椎骨,帮助医生测量AIS患者的Cobb角,为临床AIS诊断、手术计划和脊柱健康分析提供决策支持.
Automatic scoliosis Cobb angle estimation algorithm based on multi-scale attention
Objective Adolescent idiopathic scoliosis (AIS) is a common condition that poses a significant health risk to teenagers.The Cobb angle measurement method on X-ray images is considered a"gold standard"for assessing the severity of spinal curvature in patients.However,manual measurement of Cobb angles is complex,time-consuming,and prone to errors due to factors such as overlapping rib shadows,pelvic shadows,and morphological variations of vertebrae.Therefore,the development of fast and accurate automatic methods for Cobb angle measurement holds great clinical value.Existing segmentation-based approaches are sensitive to image quality,while keypoint detection methods often suffer from inaccurate localization due to their focus on local feature extraction.To address these limitations,this study proposes a vertebra-centered landmark detection method for automatic estimation of Cobb angles in spinal deformities.Methods A multi-scale attention M-shaped network (MSAM-Net) is constructed to detect vertebral landmarks.The network incorporates the multi-scale pyramids squeeze attention (MPSA) module and the attentional feature fusion (AFF) module to extract vertebra features and contextual information.By leveraging the vertebra center and angular offsets,the network can accurately locate the four corner landmarks,enabling the estimation of Cobb angles for the proximal thoracic,main thoracic,and thoracolumbar curves in spinal deformity assessment.Results To evaluate the accuracy of Cobb angle estimation,the proposed algorithm is assessed by using four metrics:symmetric mean absolute percentage error (SMAPE),Euclidean distance (ED),Manhattan distance (MD),and Chebyshev distance (CD) .The evaluation is conducted on the AASCE MICCAI 2019 challenge dataset.The results demonstrate SMAPE of 9.39%,ED of 4.18,MD of 5.92,and CD of 5.34.Comparative analysis of MSAM-Net with five deep learning methods based on segmentation and detection shows superior performance in Cobb angle measurement.Conclusions The experimental results highlight the capability of the proposed approach to accurately identify and locate vertebrae in X-ray images,facilitating Cobb angle measurement for AIS patients.This method has potential implications in clinical diagnosis,surgical planning,and spinal health analysis for AIS.

adolescent idiopathic scoliosisvertebra detectionCobb angledeep learningattention mechanism

韩广萍、张魁星、王苹苹、李翔、魏本征

展开 >

山东中医药大学医学人工智能研究中心 山东青岛266112

山东中医药大学青岛中医药科学院 山东青岛 266112

青岛市中医人工智能技术重点实验室 山东青岛 266112

青少年特发性脊柱侧弯 椎骨检测 Cobb角 深度学习 注意力机制

国家自然科学基金国家自然科学基金山东省自然科学基金山东省自然科学基金青岛市科技惠民示范专项齐鲁卫生与健康领军人才培育工程项目(2021)

6237228061872225ZR2020KF013ZR2019ZD0423-2-8-smjk-2-nsh

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(4)