首页|深度学习在新型冠状病毒肺炎的智能诊断应用的研究进展

深度学习在新型冠状病毒肺炎的智能诊断应用的研究进展

扫码查看
新型冠状病毒肺炎(corona virus disease 2019,COVID-19)具有高传染性,严重威胁人民群众的生命安全,快速筛查可以实现快速治疗、防止肺炎进展.目前COVID-19检测诊断方法的金标准为逆转录聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR),但是由于核酸检测存在耗时且假阴性率偏高的问题,而影像医生对医学图像的诊断存在主观性且工作量巨大,因此借助人工智能(artificial intelligence,AI)技术对实现COVID-19的快速诊断至关重要.随着AI在医学领域的成功应用,深度学习技术成为辅助诊断新型冠状病毒肺炎的有效方法.近年来许多学者使用深度学习技术来构建对医学图像进行智能诊断的模型,本文的主要内容就是对这类模型进行总结和分析,介绍了分割肺部区域的模型、实现二分类或多分类的分类模型以及模型在临床上的应用.与此同时,在文章中分析了COVID-19患者的影像学特点,COVID-19患者多双肺受累,其中磨玻璃影是最常见的影像征象.对COVID-19研究的最新进展也进行了介绍,主要是关于提高AI模型准确性的开发和"长新冠"综合征的相关研究.因此,在新型冠状病毒肺炎常态化管理下,模型准确性的提高可以借助数据集的扩大或模型结构轻量化等方面实现;"长新冠"综合征作为一个新的研究领域,学者可以在临床症状、预后随访和结合深度学习技术等方面进行进一步的研究.
Research progress in the application of deep learning for intelligent diagnosis in COVID-19
Corona virus disease 2019 (COVID-19) is highly contagious and poses a serious threat to the lives of people,and rapid screening can realize rapid treatment and prevent the progression of COVID-19.The current gold standard for COVID-19 detection is reverse transcription-polymerase chain reaction (RT-PCR) .However,RT-PCR is time-consuming and has a high false-negative rate,and radiologists' diagnosis of medical images is subjective and the workload is huge.So using artificial intelligence (AI) technology is essential to rapidly diagnose COVID-19.With the successful application of artificial intelligence in the medical field,deep learning techniques have become an effective method to assist in the diagnosis of COVID-19.In recent years,many scholars have used deep learning techniques to construct models for intelligent diagnosis of medical images,and the main content of this paper is to summarize and analyze such models,introducing models for segmenting lung regions,classification models for realizing binary classification or multi-classification as well as the clinical applications of the models.Meanwhile,in the article,the imaging features of COVID-19 patients are analyzed.COVID-19 patients tend to have bilateral lung involvement,in which ground glass shadow is the most common sign of images.The latest progress in COVID-19 research is also presented,mainly about the development of improving the accuracy of the AI model and the related research of"long COVID-19"syndrome.Therefore,under the normalized management of COVID-19,model accuracy can be improved by expanding the dataset or lightweighting the model structure,etc.As a new research field,scholars can further study the"long COVID-19"syndrome in terms of clinical symptoms,prognostic follow-up,and the combination of deep learning techniques.

deep learningCOVID-19artificial intelligencecomputed tomographysegmentation networkclassification network

王颖、彭文献

展开 >

上海体育大学运动健康学院 上海 200438

上海健康医学院医学影像学院 上海 201318

深度学习 新型冠状病毒肺炎 人工智能 计算机断层扫描 分割网络 分类网络

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(4)
  • 3