首页|基于多任务对比自监督双通道网络的肺腺癌CT图像分类

基于多任务对比自监督双通道网络的肺腺癌CT图像分类

扫码查看
目的 基于CT图像的肺腺癌精确诊断对后续治疗具有重要的临床意义.卷积神经网络(convolutional nerual network,CNN)图像分类方法大多侧重于图像的局部特征,难以完全捕获全局知识和空间特征.为了充分学习这些有效特征,本文提出了一种多任务对比自监督双通道网络(multi-task contrastive self-supervised dual network,MTCSSDN),实现该疾病的计算机辅助诊断.方法 首先采用基于Conformer的骨干网络将3D CNN和Transformer统一集成到一个网络框架中,使用特征耦合单元(feature coupling unit,FCU)交互式融合不同分辨率下的局部特征和全局表示.然后在同一网络框架中使用并行结构进行跨架构对比学习来联合捕获图像丰富的空间特征,以训练特征表达性能更强的预训练模型.最后迁移至下游图像分类任务,利用原始图像对下游网络模型进行微调,进一步提升模型的分类性能.结果 MTCSSDN算法在肺腺癌数据集上进行评估,获得79.70%±2.13%的平均分类准确率、78.70%±4.22%的平均敏感性、74.00%±7.44%的平均特异性和52.70%±6.12%的平均约登指数.结论 本文所提出的MTCSSDN算法可以有效地提升肺腺癌辅助诊断的性能,具备潜在的临床应用价值.
Lung adenocarcinoma CT images classification based on multi-task contrastive self-supervised dual network
Objecctive The accurate diagnosis of lung adenocarcinoma based on CT images is of great clinical significance for subsequent treatment.Convolutional nerual network (CNN) image classification methods mostly focus on the local features of images,and it is difficult to fully capture global knowledge and spatial features.In order to fully learn these effective features,this paper proposes a multi-task contrastive self-supervised dual network (MTCSSDN) to realize computer-aided diagnosis of this disease.Methods Firstly,the conformer-based backbone network is used to integrate 3D CNN and Transformer into a network framework.The feature coupling unit (FCU) is used to interactively fuse the local features and global representations under different resolutions.Then,a concurrent structure is used in the same network framework for cross-architecture contrast learning to jointly capture the rich spatial features of images,so as to train the pre-trained model with stronger feature expression performance.Finally,it is transferred to the downstream image classification task,and the original image is used to fine-tune the downstream network model to further improve the classification performance of the model.Results MTCSSDN algorithm is evaluated on the lung adenocarcinoma dataset,and achieves the mean classification accuracy of 79.70%±2.13%,sensitivity of 78.70%±4.22%,specificity of 74.00%±7.44% and Youden index of 52.70%±6.12%.Conclusions Therefore,The MTCSSDN algorithm proposed in this paper can effectively improve the performance of auxiliary diagnosis of lung adenocarcinoma and has potential clinical application value.

classification of lung adenocarcinomaself-supervised learningconvolutional neural networkTransformercontrastive learning

赵娜娜、韩向敏、王祥、高曼、刘士远

展开 >

上海大学医学院 上海 200444

上海大学通信与工程学院 上海 200444

海军医科大学长征医院影像科 上海 200003

肺腺癌分类 自监督学习 卷积神经网络 Transformer 对比学习

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(5)