首页|不同深度学习网络在心脏磁共振图像自动分析中的性能研究

不同深度学习网络在心脏磁共振图像自动分析中的性能研究

扫码查看
目的 深度学习具有端对端的预测能力,能够加速医学图像的后处理,但是目前尚缺乏比较不同神经网络在心脏磁共振定量图像自动化分析性能差异的研究.因此本研究旨在探究不同神经网络是否具有自动化心脏定量图像分析的能力并比较其性能.方法 本研究收集了 155 名健康志愿者的MOLLI、SASHA T1 定量图像和 T2-prep bSSFP T2 定量图像,分别对 AlexNet、GoogLeNet、ResNet 和DenseNet进行训练,使这些网络能够直接从T1 和T2 定量图像中预测左心室全局(左心室心肌和左心室血液)与局部(室间隔和AHA节段)T1 和T2 定量结果,并对其性能进行比较.结果 4 种神经网络均能直接从心脏磁共振定量图像中预测全心和局部心肌的T1 和T2,具有自动化分析的能力.不同的网络对T1 和T2 的预测性能存在差异,同时对序列也敏感.在 3 个数据集中,DenseNet对于MOLLI和SASHA T1 定量图像的预测误差为 17 ms±60 ms,对于 T2 定量图像的预测误差约 2 ms,具有最好的性能.GoogLeNet性能优于AlexNet和ResNet.结论 本研究实验证明神经网络能够自动化分析心脏磁共振定量图像,不同神经网络存在性能差异,本研究可为心脏磁共振图像自动化分析技术提供支持,为医生等提供一种快速的图像分析方法.
Study of deep learning architectures on automatic analysis for cardiac parametric mapping
Objective Neural network with end-to-end prediction ability could accelerate medical imaging processing.Currently,there is no study to compare the difference in automatically analyzing cardiac parametric mapping between different neural networks.Therefore,this study aims to investigate the capability of various neural networks for automated cardiac parametric mapping analysis and to compare their performance.Methods This study collected MOLLI T1 images,SASHA T1 images,and T2-prep bSSFP T2 images from 155 healthy volunteers and built four end-to-end neural networks with AlexNet,GoogLeNet,ResNet and DenseNet structures.We trained these neural networks to directly predict global[left ventricle(LV)myocardium and LV blood]and regional(ventricular septal and AHA segment)T1 and T2 values from corresponding maps.The strategies of training,validation,and testing for four networks were kept consistent.We compared their prediction performance.Results All four neural networks could successfully predict T1 and T2 for both global and region LV myocardium and LV blood with different accuracy,achieving automatic analysis.The performance of four networks also sensitivities to mapping sequence.DenseNet had the minimal residual error among all approaches.The prediction error of T1 for MOLLI and SASHA T1 maps was 17 ms±60 ms,and about 2 ms for T2 maps.The performance of GoogLeNet was superior to AlexNet and ResNet.Conclusions This study demonstrated that neural networks could automatically analyze cardiac parametric maps.The performance was dependent on the structure of neural networks.This study would promote the development of automatic techniques for cardiovascular magnetic resonance and provide an automatic tool for clinical practice.

deep learningcardiovascular magnetic resonanceautomatic analysisparametric mapmyocardial T1 and T2 analysis

代佳欢、唐晓英、郭瑞

展开 >

北京理工大学医学技术学院(北京 100081)

深度学习 心脏磁共振 自动分析 定量图像 心肌T1 和T2 分析

2024

北京生物医学工程
北京市心肺血管疾病研究所

北京生物医学工程

CSTPCD
影响因子:0.474
ISSN:1002-3208
年,卷(期):2024.43(6)