首页|轻量化的PCB表面缺陷检测算法

轻量化的PCB表面缺陷检测算法

扫码查看
针对印刷电路板(PCB)表面缺陷检测存在的速度低和准确率不高等问题,提出了一种基于改进YOLOv4-tiny模型的PCB表面缺陷检测算法.首先,采用了优化后的聚类方法对缺陷数据集进行聚类,以解决初始先验框不适合PCB表面缺陷检测的问题;其次,为了解决主干网络在下采样时可能丢失小尺度目标信息的问题,引入了切片操作;接着,在特征融合网络中,引入了软池化卷积结构,以提高模型感受野,增强对小目标特征的表达能力;最后,通过引入改进后的交叉熵损失函数优化了损失函数.在北京大学开源的印刷电路板缺陷数据集上验证了所提算法的效果,结果表明,相较于其他经典算法,所提算法在检测速度、精度和模型参数量等指标上都有较大的提升.
Lightweight PCB Surface Defect Detection Algorithm
Aiming to address the problems of surface defect detection of printed circuit board ( PCB ) , such as low detection speed and identification accuracy, we propose a PCB surface defect detection algorithm based on improved YOLOv4-tiny.Firstly, the clustering method was used to cluster the defect dataset to solve the problem that the initial prior bounding box is not suitable for PCB surface detection defects.Secondly, to solve the problem of small-scale object information loss in the downsampling of backbone network, slicing operation was introduced.Then, the softpool convolution structure was introduced into the feature fusion network to improve the model receptive field and enhance the expression ability of small object features.Finally, the improved cross-entropy function was used to optimize the loss function.The proposed algorithm was verified on the open source printed circuit board defect dataset of Peking University.Compared with other classical algorithms, the proposed algorithm demonstrates a great improvement in detection speed, accuracy and model parameters.

printed circuit board surface defect detectionyolo look only once version 4-tinyslicing operationcross-entropy loss function

张果、陈逃、王剑平、杨凯钧

展开 >

昆明理工大学 信息工程与自动化学院,昆明650000

印刷电路板表面缺陷检测 YOLOv4-tiny 切片操作 交叉熵损失函数

云南省基础研究重点项目

202101AS070016

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(2)
  • 5