首页|基于得分生成模型的时间序列异常检测方法

基于得分生成模型的时间序列异常检测方法

扫码查看
为了解决传统时间序列异常检测模型在时序数据随机性表征不足以及模型泛化能力较弱的问题,提出了一种基于得分生成的异常检测模型.针对复杂信息物理系统中运行监控的时序数据,设计了一个多维时间序列异常检测框架,利用回归模型捕捉数据内在的时间模式.考虑时序生成过程的随机性,采用去噪得分匹配的方法来估计梯度信息,并利用估计的梯度信息,设计了高效的异常评分方法.在公开的池化服务器数据集和安全水处理数据集上,所提模型的异常检测F1值分别达到了96%和90.18%,比使用基线模型得到的最高F1值分别提高了1.02%和1.01%.消融实验和案例分析结果表明,用噪声索引模块和签名矩阵模块增强了模型的特征提取能力,所提模型的异常阈值在[0.386,0.8)之间时的F1值大于等于0.8.
Time Series Anomaly Detection Based on Score Generative Model
To solve the shortcomings of traditional time series anomaly detection models in the representative stochastic variables of data and poor model generalization ability, a score-based generative model was proposed.For time-series data monitoring in complex cyber-physical systems, a multidimensional time series anomaly detection framework is designed.This framework utilizes regression models to capture the inherent temporal patterns within the data.Considering the randomness of the time series generation process, we employed a denoising score matching method to estimate gradient information.Then, using the estimated gradient information, an efficient anomaly scoring method was devised to improve the accuracy of the time series anomaly detection task.Experiments on pooled server metrics dataset and secure water treatment dataset showed that the proposed method can achieve F1 score of 96% and 90.18% respectively, by more than 1.02% and 1.01% respectively higher than the highest F1 scores obtained via baseline models.The results of the ablation experiments and case analyses demonstrate that the noise index module and the signature matrix module can improve the model's capability of feature extraction, and the proposed model achieves an F1 score above 0.8 for anomaly thresholds within the range of [0.386, 0.8).

cyber physical systemtime seriesanomaly detectionscore-based generative mode

周浩、禹可、吴晓非

展开 >

北京邮电大学 人工智能学院,北京100876

信息物理系统 时间序列 异常检测 得分生成模型

国家自然科学基金国家自然科学基金国家111工程项目北京邮电大学博士生创新基金

6237105761601046B08004CX2022149

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(2)
  • 2