首页|面向合作博弈及深度学习的节点协作缓存机制

面向合作博弈及深度学习的节点协作缓存机制

扫码查看
为了解决用户激增的内容需求与有限的网络资源之间的矛盾,利用节点间的协作缓存实现内容共享,并减轻网络负担.针对节点缓存空间受限的场景,考虑交互成本和个体理性等因素,将协作缓存问题建模成合作博弈,实现系统效用的优化.根据节点间的效用是否可转移,分类讨论不同情况下的合作博弈:在效用可转移的博弈下,推导出节点形成稳定大联盟的条件;在效用不可转移的博弈下,考虑到理性节点无法确保形成稳定的大联盟,且联盟的数量随用户数量剧增.因此,提出一种基于深度强化学习的联盟形成算法,在有限时间内保证节点间稳定联盟的形成.理论分析和仿真实验结果表明,所提算法能收敛于纳什稳定最优解或渐进最优解,其性能优于其他对比算法.
Collaborative Caching Mechanism of Nodes Based on Cooperative Game and Deep Learning
The collaborative caching between nodes is utilized to achieve content sharing and reduce the network burden in order to solve the increasing contradiction between the user's increasing content demand and limited network resourcesWe model the collaboration caching problem as a cooperative game by considering the factors of interaction costs and individual rationality to optimize the system utility with limited cache space.According to whether the utility between nodes can be transferred,we discuss the cooperative game in two cases.Under the transferable utility game,the conditions for achieving a stable grand coalition are derived.For non-transferable utility game,the rational nodes cannot ensure the formation of a stable grand coalition,and the number of formable coalitions increases dramatically with the number of users.Therefore,to ensure the formation of stable coalitions within a limited time,a deep reinforcement learning-based coalition formation algorithm is proposed.Both theoretical analysis and simulation results demonstrate that the proposed algorithm can converge to a Nash-stable optimal solution or asymptotically optimal solution,which outperforms other known comparison algorithms.

node collaborationcontent sharingcooperative gamedeep reinforcement learning

金宁、周文倩、周旭颖、金小萍

展开 >

中国计量大学信息工程学院,杭州 310018

节点协作 内容共享 合作博弈 深度强化学习

国家自然科学基金项目中国计量大学基本科研业务费项目

622015392022YW61

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(3)
  • 3