首页|面向医学图像分割的傅里叶半监督学习方法

面向医学图像分割的傅里叶半监督学习方法

扫码查看
标注数据稀缺会影响医学图像的分割精度.对此,提出一种基于傅里叶变换的一致性约束半监督学习方法.在少量带标注数据的情况下,无标注数据经傅里叶变换插值和模型分割后的输出与其经反向操作的输出具有空间一致性,利用该特点构建针对无标注数据的一致性正则化约束,以提升全监督学习的模型性能.在自动心脏诊断、多器官分割和电子计算机断层扫描淋巴结公开数据集上的实验结果表明,所提方法的性能优于基线模型,且可与当前性能标杆半监督学习方法融合,以提升分割性能.
Fourier Semi-Supervised Learning Method for Medical Image Segmentation
The scarcity of labeled data is a challenging problem that affects the segmentation accuracy of medical images.Aiming to solve this problem,a new semi-supervised learning method based on Fourier transform and consistent constraintis proposed.In the case of a small amount of annotated data,the output of unannotated data via Fourier transform interpolation and model segmentation is spatially consistent with the output of reverse operation,and the consistency regularization constraint for unannotated data is constructed to improve the model performance of fully supervised learning.The experimental results,based on the openly available datasets ofthe automatic cardiac diagnosis challenge,synapse and computed tomography lymph node,demonstratethat the proposed algorithm is superior to baseline methods and can be integrated with existing state-of-the-art semi-supervised medical image segmentation methods to improve their segmentation performances.

medical image segmentationsemi-supervised learningFourier transformationconsistency regularization constraint

王鹏举、张晓、冀振燕、于瑾、宋玥增

展开 >

北京交通大学软件学院,北京 100044

解放军总医院第一医学中心神经内科医学部,北京 100853

医学图像分割 半监督学习 傅里叶变换 一致性正则化约束

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(3)
  • 4