首页|一种用于时间序列预测的平移不变神经网络结构

一种用于时间序列预测的平移不变神经网络结构

扫码查看
全序列时序形态相似性度量方法通常存在不能从整体上挖掘时序间形态趋势变化的问题.对此,提出了一种具有丰富输出表示的扩展层,并结合自编码器网络自动从时序数据中学习具有平移不变的全局相似性,实现对时序数据的全局特征提取和时间序列预测效果的提升.实验结果表明,所提模型在多个现实世界时序数据集的预测任务中的所有情况下都显示出优异的性能.
A Translation-Invariant Neural Network Architecture for Time Series Forecasting
Targeting the problem that the whole series morphological similarity measurement method usually cannot mine the morphological trend change between time series as a whole,an extended layer with rich output representation is proposed,and the auto-encoder network is combined to automatically learn the global similarity with translation invariant from time series data,to realize the global feature extraction of time series data and the improvement of time series prediction effect.Experimental results show that the proposed structure performs excellently in all cases in the forecasting task of multiple real-world time series datasets.

time seriestranslation invarianceneural networksauto-encodersextended layer

张晗

展开 >

东北财经大学数据科学与人工智能学院,大连 116025

时间序列 平移不变性 神经网络 自编码器 扩展层

辽宁省应用基础研究计划项目辽宁省教育厅基本科研项目国家自然科学基金项目

2023JH2/101600040LJKMZ2022159872273019

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(3)
  • 20