首页|大语言模型时代的人工智能:技术内涵、行业应用与挑战

大语言模型时代的人工智能:技术内涵、行业应用与挑战

扫码查看
大语言模型(LLM)的出现标志着人工智能LLM时代的来临.基于海量数据集的预训练,LLM展现出卓越的适应性和创造力,正在成为推动社会发展的关键驱动力,并将在体系化人工智能中扮演重要角色.鉴于既有综述在分析LLM面临的挑战、关键属性、工程实现等方面的不足,笔者从技术内涵、行业应用和主要挑战三个维度重新构建探讨框架.重点阐述了LLM在系统架构、训练策略、模型规模、压缩、多模态融合、提示与规划等技术层面的内涵,以及在教育、科研、医疗、金融、司法等领域的应用前景.同时,讨论了LLM可信性、可控性与安全性的研究现状,以及LLM在技术和社会层面所面临的双重挑战,展望了LLM在体系化人工智能中的角色定位和研究方向的契合点,以期为LLM的研究与应用提供新的视角和思路.
Artificial Intelligence in the Era of Large Language Models:Technical Significance,Industry Applications,and Challenges
The emergence of ChatGPT marks the advent of the era of artificial intelligence powered by large language models (LLM).Based on large-scale datasets for pre-training,LLMs demonstrate exceptional adaptability and creativity,becoming a critical driving force in advancing society and playing a significant role in systematic artificial intelligence.Given the limitations of existent reviews in analyzing the challenges faced by LLMs,their key attributes,and engineering implementation aspects.The framework is rediscussed and reconstructed from three dimensions:technical connotations,industry applications,and major challenges.The focus is on elucidating the connotation on the level of technical aspects of LLMs,including system architecture,training strategies,model scale,compression,multimodal fusion,prompting,and planning.It also explores the application prospects in various fields such as education,scientific research,healthcare,finance,and justice.Additionally,the discussion covers the current state of research on the reliability,controllability,and security of LLMs,as well as the dual challenges LLMs face on both technical and societal levels.It envisions the role of LLMs in systematic artificial intelligence and identifies alignment points in research directions,aiming to provide new perspectives and ideas for the research and application of LLMs.

large language modelsmultimodal modelstrustworthinesscontrollabilitysystematic artificial intelligence

陈光、郭军

展开 >

北京邮电大学 人工智能学院,北京100876

大语言模型 多模态模型 可信性 可控性 体系化人工智能

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(4)