首页|基于域划分的图匹配网络数据流分类方法

基于域划分的图匹配网络数据流分类方法

扫码查看
针对当前网络流量分类存在流量数据加密、分布不均匀和用户隐私的问题,提出了一种基于域划分的图匹配网络流量分类方法,仅通过非内容特征表示网络流特征,并通过图匹配算法降低了所辖类间非平衡差异,以实现粗粒度聚类算法和可靠图匹配算法.首先,设计了一个无监督聚类框架,依据少量特征分析流量数据的不同分布和类别相似性,将网络会话聚合到能提取主要特征的几个聚类中;然后用来自相同网络的聚类之间的相关性来构建相似图;最后提出一个图匹配算法,通过结合图神经网络和图匹配网络揭示不同网络关系之间的对应关系,将测试网络中的聚类与初始网络中的集群进行关联,从而可以根据训练集网络中的关联聚类对测试集群进行标记.仿真结果表明,所提方法的分类准确率可达到96.7%,显著优于现有方法.
Traffic Classification Using Domain-Based Graph Matching
A domain-based graph matching approach is proposed to address the current challenges in network traffic classification,including data encryption,uneven distribution and user privacy concerns.The method relies solely on non-content features to characterize network flow characteristics and employs graph matching algorithms to reduce inter-class imbalances,enabling coarse-grained clustering and reliable graph matching.Firstly,an unsupervised clustering framework is designed,which studies the diverse distributions and category similarities of traffic data based on a limited set of features,aggregating network sessions into a few clusters with extracted primary features.Next,the correlation between clusters from the same network is used to construct a similarity graph.Finally,a graph matching algorithm is proposed,which combines graph neural networks and graph matching networks to reveal reliable correspondences between different network relationships.This allows for associating clusters in the test network with clusters in the initial network,enabling the labeling of test clusters based on associated clusters in the training set.Simulation results demonstrate that the proposed method can reach an accuracy rate of 96.7% ,which is significantly superior to existing approaches.

coarse-grained clusteringtraffic classificationgraph matching algorithmmulti-dimensional features

杜玉鑫、何明枢、路子逵、王欣雷、王小娟

展开 >

北京邮电大学电子工程学院,北京 100876

北京邮电大学网络空间安全学院,北京 100876

粗粒度聚类 流量分类 图匹配算法 多维度特征

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)