首页|基于深度学习的低光照目标检测算法

基于深度学习的低光照目标检测算法

扫码查看
在复杂的低照度环境中获取的图像容易存在对比度低、细节信息丢失等问题,对此,考虑到低光照环境检测的特殊性,对目标检测算法YOLOv8进行了改进,提出了 YOLO-RSG算法,以提高低光照环境下目标检测的可靠性.首先,在YOLO-RSG算法的主干特征提取部分采用了多层级残差连接模块,提升了模型的多尺度和弱特征提取能力;随后,引入空洞空间金字塔结构,利用不同扩张率提取复杂场景信息,维持计算量的同时提升了训练效果;最后,自适应地融入了动态选择机制和全局注意力机制,提升了网络模型的多尺度特征提取融合与表征能力.仿真实验结果表明,相较于YOLOv8算法,YOLO-RSG算法在ExDark数据集中的均值平均精度提升了 3.6%,可以有效地提高低照度场景下的目标检测性能,并具有良好的稳定性和适用性.
A Low Light Target Detection Algorithm Based on Deep Learning
The image acquired in complex low illumination environment is prone to low contrast and loss of detail information.Therefore,considering the challenges of low-light detection,the object detection algorithm you look only once v8(YOLOv8)was improved and YOLO-resblock selective kernel global attention mechanism(YOLO-RSG)has been proposed to improve the reliability of object detection in low-light environments.Firstly,the backbone feature extraction part of the YOLO-RSG algorithm adopts C3_ResBlock module to improve the multi-scale and weak feature extraction capability of the model.Then,squeeze-and-excitation-atrous spatial pyramid pooling structure is introduced to extract complex scene information with different expansion rates,which improves the training effect while maintaining the computational load.Finally,the selective kernel mechanism and global attention mechanism are integrated adaptively,which improves the multi-scale feature extraction,fusion and representation ability of the network model.Simulation results show that compared with YOLOv8 algorithm,YOLO-RSG algorithm improves the mean average accuracy of ExDark dataset by 3.60% ,which can effectively improve the target detection performance in low-illumination scenes,and has good stability and applicability.

object detectionlow-light scenesmulti-scale featuresattention mechanism

王满利、张航、张长森

展开 >

河南理工大学物理与电子信息学院,焦作 454003

目标检测 低光照场景 多尺度特征 注意力机制

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)