首页|低AoI多无人机物联网任务分配和轨迹规划

低AoI多无人机物联网任务分配和轨迹规划

扫码查看
用信息年龄(AoI)能够有效衡量数据的时效性和价值.为了解决应急通信中平均AoI最小化的问题,将无人机作为信息中继,提出了一种基于深度强化学习框架的任务分配和轨迹优化算法.首先,通过分析AoI最小化与无人机任务的关系,将问题分解为2个阶段求解;其次,采用k-means++聚类算法为无人机分配任务,以飞行距离、受灾情况及救援小组需求为标准,基于指针网络框架优化了无人机的轨迹;最后,设计了集中信息共享机制,节省了能耗和信息分发时间.实验结果表明,相较于传统方法,所提的优化算法在无人机应急救灾中能够显著降低AoI,有效缓解临时通信的压力.
Low AoI Multi-UAV IoT Task Allocation and Trajectory Planning
Age of information(AoI)provides an accurate measure of the value of data.In order to minimize average Aol in emergency Internet of things(IoT)communication,unmanned aerial vehicle(UAV)is introduced as an information relay,and a task assignment and trajectory optimization algorithm based on a deep reinforcement learning framework is proposed.Firstly,by analyzing the relationship between AoI minimization problem and the UAV,it is solved in two stages.Secondly,the k-meanis++clustering algorithm is used to assign tasks to the UAV,and the trajectory of the UAV is optimized in real-time through the pointer network according to the flight distance,disaster situation and rescue team needs.Finally,a centralized information-sharing mechanism is designed to save energy consumption and information distribution time.The experimental results show that compared with traditional methods,the proposed optimization algorithm can achieve a smaller AoI in the UAV emergency disaster relief,thus alleviating the temporary communication pressure caused by emergency disaster relief.

unmanned aerial vehicle-assisted Internet of thingsage of informationtask assignmenttrajectory optimizationdeep reinforcement learning

周子轩、李新凯、张宏立

展开 >

新疆大学电气工程学院,乌鲁木齐 830047

无人机辅助物联网 信息年龄 任务分配 路径规划 深度强化学习

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)
  • 1