首页|一种面向多层次特征概率的DGA域名检测方法

一种面向多层次特征概率的DGA域名检测方法

扫码查看
现有的域名生成算法(DGA)检测方法在提取和利用域名特征方面存在不足,且基于词嵌入的检测方法容易导致重要信息的丢失.为了解决这些问题,提出了一种基于多层次特征概率的DGA域名检测方法.首先,使用词嵌入技术生成域名的向量表示,同时通过统计分析方法提取域名的字符特征,生成域名的字符特征表示;接着,分别采用多头金字塔网络和Transformer来处理域名向量,以捕捉域名的上下文信息和语义信息,并将不同的域名信息融合生成域名的文本特征表示;最后,计算不同域名特征的分类概率,利用前馈神经网络处理域名的字符特征,使用胶囊网络处理域名的文本特征,并通过集成不同域名特征的概率实现域名检测.实验结果表明,所提方法的检测性能优于其他对比方法,准确率提升了 0.5%~1.3%,精确率提升了 0.8%~7.2%,F1值提升了 1.2%~5.2%.
A DGA Domain Name Detection Method of Multilevel Feature Probability
The existing domain name generation algorithm(DGA)detection methods are insufficient in extracting and utilizing domain name features,and the detection methods based on word embeddings are easy to lead to the loss of important information.In order to solve these problems,a DGA domain name detection method based on multilevel feature probability was proposed.Firstly,the word embedding technology was used to generate the vector representation of the domain name,and the character features of the domain name were extracted through statistical analysis to generate the character feature representation of the domain name.Then,the multi-head pyramid network and transformer were used to process the domain name vector to capture the context information and semantic information of the domain name,and the different domain name information was fused to generate the text-level feature representation of the domain name.Finally,the classification probability of different domain name features is calculated,the feedforward neural network is used to process the domain name character features,the capsule network is used to process the domain name text features,and the domain name detection is realized by integrating the probabilities of different domain name features.Experimental results show that the detection performance of the proposed method outperforms that of other comparison methods,with the accuracy improvement from 0.5% to 1.3% ,the precision improvement from 0.8% to 7.2% ,and the F1 value improvement from 1.2% to 5.2% .

domain generation algorithmdomain name detectionmulti head pyramid networkdomain character featurestext feature

杨宏宇、章涛、张良、胡泽、谢丽霞

展开 >

中国民航大学安全科学与工程学院,天津 300300

中国民航大学计算机科学与技术学院,天津 300300

亚利桑那大学信息学院,美国图森AZ85721

域名生成算法 域名检测 多头金字塔网络 文本特征 字符特征

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)