首页|一种识别倾斜混合颜色车牌的轻量级模型

一种识别倾斜混合颜色车牌的轻量级模型

扫码查看
基于神经网络的车牌识别模型占用存储空间较大,这不利于边缘计算设备的部署,并且对倾斜类车牌和混合颜色车牌的识别率偏低.为了解决这些问题,提出了一种识别倾斜、混合颜色车牌的轻量级神经网络组合模型.首先采用基于YOLO算法的改进算法P-YOLO,实现车牌的检测、分类和定位;随后,使用基于神经网络的车牌识别(LPRNet)算法的改进算法N-G-LPRNet进行车牌字符识别,并用不同算法在中国城市停车数据集上进行了测试.结果表明,在车牌检测阶段,P-YOLO算法下倾斜类车牌的mAP指标显著提高;结合字符识别网络,对常规车牌、微倾斜车牌和强倾斜车牌的识别准确率分别提高了约1.3%、70.7%和63.8%;在字符识别阶段,在混合颜色车牌训练的前提下,用N-G-LPRNet算法对蓝色车牌和绿色车牌的识别率分别提升了约40.65%和32.26%;用P-YOLO-N-G-LPRNet组合算法的综合识别率达到了 98.16%,比YOLO-LPRNet算法的性能提高了 41.33%.使用组合算法进行车牌识别所占用的空间约为5 MB,在识别率、鲁棒性和轻量化方面的优势明显,适合部署在边缘设备上.
A Lightweight Model for Identifying Tilted Mixed Color License Plates
The size of the license plate recognition model based on neural network is large.It is not conducive to deploy in edge computing equipment.In addition,the recognition rate is lowish for oblique license plates and mixed color license plates.To overcome the shortage,a lightweight neural network combination model is proposed for recognizing tilted mixed color license plates.Based on you only look once(YOLO)algorithm,an improved point-YOLO(P-YOLO)algorithm is presented to achieve license plate detection,classification,and localization.Then,based on license plate recognition via deep neural networks(LPRNet),an enhanced normalization-gray-LPRNet(N-G-LPRNet)algorithm is proposed to recognize license plate characters.Finally,compared to the original YOLO algorithm,the test results on the Chinese city parking dataset show that the P-YOLO algorithm significantly improves the mean average precision index for detecting tilted license plates.Combined to character recognition networks,the recognition accuracy for conventional,slightly tilted and strongly tilted license plates has improved by about 1.3% ,70.7% ,and 63.8% ,respectively.In the character recognition stage,under the premise of mixed color license plate training,the N-G-LPRNet algorithm improves the recognition rates of blue and green license plates by about 40.65% and 32.26% ,respectively.The P-YOLO-N-G-LPRNet combination model has a comprehensive recognition rate of up to 98.16% .Compared to YOLO-LPRNet,the performance of P-YOLO-N-G-LPRNet has increased 41.33% .The combined algorithm for license plate recognition takes up about 5 MB,which has obvious advantages in terms of recognition rate,robustness,and lightweight,and is suitable for deployment on edge devices.

deep learningtarget detectioncharacter recognitionforecasting pointgray preprocessing

向万里、王力东、孟学雷、杜文举、杨霄煜

展开 >

兰州交通大学交通运输学院,兰州 730070

深度学习 目标检测 字符识别 预测点 灰度预处理

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)