首页|面向流任务的低功耗多用户边缘计算

面向流任务的低功耗多用户边缘计算

扫码查看
在移动边缘计算系统中,移动用户可以将计算任务上传至接入网侧的边缘服务器,从而有效降低自身计算任务的处理开销,但存在任务数据长时间累积的情况.为了确保任务完成的实时性,提出了一种流任务处理方案,将任务的数据收集、本地处理、卸载传输以及边缘计算在不同的时隙中进行分离.根据该方案,任务大小和实际能耗均与数据收集的时间长度相关.为了实现系统整体的最优节能设计,研究了最小化用户完成流任务的平均功耗问题,并在任务完成各阶段对持续时间、多用户卸载比例和带宽分配进行了联合优化.由于所建立的优化问题为非凸问题,所以很难直接求解.为了解决这一难题,基于块坐标下降法将求解变量分离为两部分,并进一步揭示了最优解的解析性质.基于此,将两部分变量的求解分别简化为二分搜索和黄金分割搜索.仿真结果表明,所提方法具有极低的计算复杂度,并且显著降低了系统的平均功耗.
Energy-Efficient Multi-User Edge Computing for Streaming Tasks
In a multi-user mobile edge computing(MEC)system,mobile users can upload their own tasks to the edge server on the access network,so as to effectively reduce the processing cost of their own computing tasks,but there is a situation that task data accumulates for a long time.In a MEC system,to ensure the real-time execution of tasks with long data collecting durations,a streaming task processing scheme is proposed,where the data collection,local computing,offloading transmission,and edge computation are carried out in different time slots for a task.Under this scheme,both the task size and the actual energy consumption are related to the time length of data collection.To find the most energy-efficient way for completing the streaming tasks for the whole system,the problem of minimizing the average power consumption is formulated to jointly optimize the duration of each stage,the multi-user offloading ratio and bandwidth allocation for completing a task.Because the established optimization problem is a non-convex problem,it is difficult to solve it directly.In order to solve the intractable non-convex problem,the block coordinate descent method is utilized to separate the optimization variables into two parts.Exploiting the analytical structure of the problem,the optimal solution to the two parts of variables is obtained with bisection search and golden section search,respectively.Simulation results show that the proposed method has extremely low computational complexity and can significantly reduce the overall system power consumption.

edge computingenergy efficiencymultiple usertask offloading

李翔、李连源、喻炜、吴博、葛欣

展开 >

中国移动通信有限公司研究院,北京 100053

边缘计算 低功耗 多用户 任务卸载

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)