首页|面向林火监控的无人机位置部署策略

面向林火监控的无人机位置部署策略

扫码查看
在森林发生火灾时的复杂环境中,无人机的部署面临着能耗高、卸载效率低等问题.因此,提出了一种空地辅助的边缘计算框架.该框架中,无人机在火灾现场收集数据并提供边缘计算服务,而指挥中心则提供计算能力更强的边缘计算服务.为了提升计算服务的效率,首先,综合考虑火灾严重程度和距离对无人机部署的影响,利用火灾蔓延速度和距离确定需要无人机提供计算服务的区域;然后,将无人机部署问题建模为一个最小化任务计算时延和无人机能耗的系统成本问题;最后,设计了一种基于多智能体强化学习的系统成本最小化的自主部署策略,以获得无人机在指定任务区域的最佳位置.仿真结果证明,所提方案可以有效降低无人机部署的总成本.
Research on the Deployment Strategy of UAV Location for Forest Fire Monitoring
The deployment of unmanned aerial vehicles(UAVs)in the complex environment of forest fires faces problems such as high energy consumption and low offloading efficiency.Therefore,an air to ground assisted edge computing framework is proposed.In this framework,UAVs collect data and provide edge computing services at the fire scene,while the command center provides edge computing services with more computing power.In order to improve the efficiency of the computing service,first,the impact of fire severity and distance on UAV deployment is considered comprehensively,and the fire spread speed and distance are used to determine the area where UAVs are needed to provide computing services;then,the UAV deployment problem is modeled as a system cost problem that minimizes the task computation latency and the energy consumption of the UAVs;and finally,an autonomous deployment strategy based on multi-agent reinforcement learning for minimal system cost was designed to obtain the optimal position of the UAV in the specified mission area.Simulation results demonstrate that the proposed scheme can effectively reduce the total cost of UAV deployment.

unmanned aerial vehicleedge computinglocation deploymentmulti-agent reinforcement learning

鲜永菊、左维昊、汪洲、谭文光

展开 >

重庆邮电大学通信与信息工程学院,重庆 400065

无人机 边缘计算 位置部署 多智能体强化学习

2024

北京邮电大学学报
北京邮电大学

北京邮电大学学报

CSTPCD北大核心
影响因子:0.592
ISSN:1007-5321
年,卷(期):2024.47(5)