首页|基于改进YOLOv5的课堂人脸表情检测

基于改进YOLOv5的课堂人脸表情检测

Classroom Face Expression Detection Based on Improved YOLOv5

扫码查看
针对课堂场景下,学生的面部表情"多目标""小目标"的检测效果较差,出现误检、漏检等现象,本文提出一种改进YOLOv5的课堂人脸表情检测算法YOLOv5-SWIN.首先,使用Swin Transformer作为模型的主干特征提取网络,增强全局信息感知,进一步增强目标的语义信息;其次,引入CBAM注意力机制融合到特征提取网络中,以便更好地提高检测精度;最后,使用NWD损失函数,使得模型有效地降低对"小目标"检测的敏感性,进而提升模型的鲁棒性.在自主搭建的大规模课堂场景下利用学生人脸表情数据集进行实验,实验结果表明该方法能够快速、准确地识别学生的面部表情,改进后的模型在自建数据集上准确率提升4%,达到82.1%.
For the classroom scenario, the detection effect of students' facial expression "multi-target"and "small target" is poor, and the phenomenon of misdetection and omission occurs. In this paper, we propose YOLOv5-SWIN, a classroom facial expression detection algorithm that improves YOLOv5. Firstly, we use the Swin Transformer as the backbone feature extraction network of the model to enhance the global information perception and further enhance the semantic information of the target. Secondly, we introduce the CBAM attention mechanism to be integrated into the feature extraction network in order to better improve the detection accuracy. Finally, by using the NWD loss function, the model effectively reduces the sensitivity to the detection of "small targets", thus improving the robustness of the model. Experiments are conducted on a large-scale dataset of students' facial expressions in a self-constructed classroom scenario, and the experimental results show that the method can quickly and accurately recognize students' facial expressions, and the accuracy of the improved model on the self-constructed dataset is increased by 4%, reaching 82.1%.

facial expressionsYOLOv5NWDSwin Transformer

马森、王佳、李旸、曹少中

展开 >

北京印刷学院信息工程学院,北京 102600

人脸表情 YOLOv5 NWD Swin Transformer

北京市自然基金项目-北京市教委科技计划重点项目北京市高教学会教改

KZ20201001502122150223021

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(3)
  • 18