首页|基于卷积神经网络的轴承故障诊断综述

基于卷积神经网络的轴承故障诊断综述

扫码查看
轴承故障的诊断一直以来都是诊断领域的一大挑战,尽早发现轴承故障有助于减少损失并预防潜在危险.本文旨在对卷积神经网络在轴承故障诊断领域的应用进行系统综述,详细分析了卷积神经网络模型的结构和原理,阐述了其在轴承故障诊断领域的发展历程,并深入探讨了常见公共数据集的特征,评述了卷积神经网络在轴承故障诊断中的优势和不足、当前面临的困难以及未来可能的研究方向.
Review of Bearing Fault Diagnosis Based on Convolutional Neural Network
The diagnosis of bearing faults has always been a major challenge in the field of diagnosis. Early detection of bearing faults can help reduce losses and prevent potential hazards. This paper aims to systematically review the application of convolutional neural network in the field of bearing fault diagnosis. This paper analyzes the structure and principle of convolutional neural network model in detail,expounds its development process in the field of bearing fault diagnosis,and deeply discusses the characteristics of common public data sets. In addition,the article reviews the advantages and disadvantages of convolutional neural networks in bearing fault diagnosis,and discusses the current difficulties and possible future research directions.

bearingsfault diagnosisConvolutional Neural Networks (CNN)data sets

周宇、王燕

展开 >

北京印刷学院印刷装备创新设计研究室,北京 102600

轴承 故障诊断 卷积神经网络(CNN) 数据集

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(8)