首页|基于Conv1 D-LSTM混合模型的长时间序列日最高温预测研究

基于Conv1 D-LSTM混合模型的长时间序列日最高温预测研究

扫码查看
针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究.数据集包含北京市2014年至2023年间的气象数据,包括天气、日最低温、日最高温、风向等特征.通过特征工程处理,将天气和风向特征编码,并对温度特征归一化.构建的Conv1D-LSTM混合模型创新性地融合Conv1D以捕获时间序列中的局部特征,融合LSTM以学习长期依赖关系.与传统模型相比,该混合模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低约17.3%和20.5%,同时R2分数提高约1.06%,表明该模型具有更高的预测精度和泛化能力.
Research on Long-Term Time Series Daily Maximum Temperature Prediction Based on a Conv1D-LSTM Hybrid Model
This paper addresses the challenges traditional methods face in processing high-dimensional data and capturing the nonlinear patterns and complex dynamic features in temperature data. A hybrid model based on Convolutional Neural Networks (Conv1D) and Long Short-Term Memory networks (LSTM) is proposed for long-term high-temperature prediction. The dataset consists of meteorological data from Beijing spanning 2014 to 2023,including features such as weather,daily minimum and maximum temperatures,and wind direction. Through feature engineering,weather and wind direction features were encoded,and temperature features were normalized. The proposed Conv1D-LSTM hybrid model innovatively integrates Conv1D to capture local features in the time series and integrates LSTM to learn long-term dependencies. Compared with traditional models,the hybrid model's Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) decreased by approximately 17.3% and 20.5%,respectively,while the R2 score increased by approximately 1.06%,demonstrating higher prediction accuracy and generalization capability.

daily maximum temperature predictionConv1D-LSTM hybrid modellong-term time seriesprediction accuracy

杜智勇、杨帆、杨文杰

展开 >

北京印刷学院,北京 102600

日最高温预测 Conv1D-LSTM混合模型 长时间序列 预测精度

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(9)
  • 10