首页|基于WOA-Elman的Stewart平台位姿正解

基于WOA-Elman的Stewart平台位姿正解

扫码查看
为了高效而准确地求解Stewart平台的正解问题,在本研究中,采用了鲸鱼算法来优化Elman神经网络模型.对Stewart平台的六根连杆长度和平台位姿的运动学模型进行了详细分析,并通过平台位姿反解数据创建实验数据集.关于Elman神经网络模型,引入鲸鱼优化算法对该模型进行了优化,以提高计算性能和精度,从而建立了WOA-Elman模型,用于求解Stewart平台的正解.通过详细的仿真分析对模型进行评估,并通过实验来验证模型的有效性.研究结果表明,采用鲸鱼算法优化的Elman神经网络模型在求解Stewart平台正解问题方面表现出色.该模型展现出出色的非线性拟合能力和高度的计算精度,能够快速而准确地求解Stewart平台的位姿正解问题.这一研究成果为解决Stewart平台位姿正解问题提供了一种高精度的方法.
The Forward Kinematics of the Stewart Platform Based on WOA-Elman
In order to efficiently and accurately solve the Stewart platform's forward solution problem,the whale algorithm is used to optimize the Elman neural network model in this study. The kinematic model of six linkage lengths and platform pose of Stewart platform is analyzed in detail,and the experimental data set is created by inverse solution of platform pose data. As for the Elman neural network model,whale optimization algorithm was introduced to optimize the model to improve the computational performance and accuracy,and WOA-Elman model was established to solve the positive solution of Stewart platform. The model is evaluated by detailed simulation analysis,and the validity of the model is verified by experiments. The results show that the Elman neural network model optimized by whale algorithm performs well in the forward solution of Stewart platform. The model shows excellent nonlinear fitting ability and high computational accuracy,which can quickly and accurately solve the position-attitude problem of Stewart platform. The research results provide a high-precision method for the Stewart platform position-attitude problem.

Stewart platformforward kinematicsElman neural networkoptimizationWOA-Elman model

石建、高振清、李佳童

展开 >

北京印刷学院机电工程学院,北京 102600

Stewart平台 位姿正解 Elman神经网络 优化 WOA-Elman模型

北京市教育委员会-市自然科学基金联合资助项目

KZ202210015019

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(9)
  • 15