首页|基于SRCNN网络的喷墨印刷图像处理方法

基于SRCNN网络的喷墨印刷图像处理方法

扫码查看
为了应对采集环境或采集系统影响导致的喷墨印刷图像模糊、不显著等问题,本文提出了一种利用灰度图像处理,根据图像灰度值设置三维地形图和灰度等高线图的方法,以确定印刷图像中墨滴的中心位置和边缘,从而更好地区分重叠墨滴和单个墨滴.此外,还提出了一种基于SRCNN(Super-Resolution Convolutional Neural Network)的喷墨印刷图像处理方法,以提高低分辨率喷墨印刷图像的清晰度.通过在特征提取层加入普通卷积层以提取更丰富的图像特征,该方法在标准数据集上得到了验证.喷墨印刷图像的结果显示,改进后的SRCNN模型比未改进的SRCNN模型峰值信噪比提高了0.014dB,证明了改进模型的有效性,并在重建图像中取得了更好的视觉效果.
The Inkjet Printing Image Processing Method Based on SRCNN Network
To address issues in inkjet printing images caused by the acquisition environment or system,such as image blurriness and insignificant parts of the image,we propose a method that utilizes grayscale image processing to set a three-dimensional topographic map and grayscale contour map based on the grayscale values of the image. This method aims to accurately determine the center position and edges of ink droplets in printed images,better distinguishing between overlapping and individual ink droplets. Additionally,we propose an inkjet printing image processing method based on the Super-Resolution Convolutional Neural Network (SRCNN) to enhance the clarity of low-resolution inkjet printing images. By adding ordinary convolution layers to the feature extraction layer to extract richer image features,this method has been validated on a standard dataset. The results in inkjet printing images show that the modified SRCNN model improves the peak signal-to-noise ratio by 0.014dB compared to the unmodified SRCNN model,demonstrating the effectiveness of the improved model and achieving better visual effects in reconstructed images.

inkjet printingimage grayscalingsuper-resolution reconstructionimage processing

张浩、阳子婧、曹天乐

展开 >

北京印刷学院机电工程学院,北京 102600

喷墨印刷 图像灰度化 超分辨率重建 图像处理

北京印刷学院青年托举项目

Ea202305

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(9)
  • 9