首页|基于RIME优化VMD-HHT的轴承故障特征提取方法

基于RIME优化VMD-HHT的轴承故障特征提取方法

扫码查看
为解决目前滚动轴承故障特征提取困难和在进行变分模态分解(VMD)时,盲目选取模态数和惩罚因子,以及相较于HHT边际谱,傅里叶分析频谱只反映某一个频率在信号中的存在可能性的问题,本文提出一种基于RIME优化VMD-HHT的轴承故障特征提取方法.首先,利用霜冰优化算法(RIME)对滚动轴承信号进行分析,采用样本熵作为适应度函数,计算出最佳分解层数和惩罚因子;然后基于得到的最优分解参数,对轴承信号进行分解得到各模态分量,随后根据中心频率验证有效性,并将其与北方苍鹰优化算法(NGO)优化VMD方法进行对比,随后使用希尔伯特变换获得各模态分量的频谱特性;最后计算各模态分量的特征参数,构成特征量集合,用于识别轴承故障信号.实验结果表明该方法得到的参数合理有效且参数最优,所提出的特征提取方法能有效分解滚动轴承故障信号并构建相应特征量集合.
Bearing fault feature extraction method based on RIME optimised VMD-HHT
In order to solve the current problems of difficulty in rolling bearing fault feature extraction and blind selection of mode number and penalty factor when performing Variational Modal Decomposition(VMD),as well as the problem that the Fourier analysis spectrum only reflects the possibility of the existence of a certain frequency in the signal compared with the HHT marginal spectrum,this paper proposes a bearing fault feature extraction method based on the RIME optimised VMD-HHT.Firstly,the rolling bearing signal is analysed by using the Rime Optimization Algorithm(RIME),and the optimal number of decomposition layers and penalty factor are calculated by using the sample entropy as the fitness function;then,based on the optimal decomposition parameters obtained,the bearing signal is decomposed to obtain the modal components,and then the validity is verified based on the centre frequency,and it is compared with the Northern Goshawk Optimization Algorithm(NGO)optimization VMD method,the spectral characteristics of each modal component are obtained by using the Hilbert transform;finally,the eigenparameters of each modal component are calculated to form a set of eigenquantities,which are used to identify the bearing fault signal.The experimental results show that the parameters obtained by this method are reasonable,effective and optimal,and the proposed feature extraction method can effectively decompose the faulty signals of rolling bearings and construct the corresponding feature set.

bearing failureVariational Modal Decomposition(VMD)Rime Optimisation Algorithm(RIME)Hilbert Marginal Spectrum(HHT)feature extraction

李奕宏、王燕

展开 >

北京印刷学院,北京 102600

轴承故障 变分模态分解(VMD) 霜冰优化算法(RIME) 希尔伯特边际谱(HHT) 特征提取

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(12)