首页|人工神经网络在径流预测中的应用:以黄河流域兰州水文站为例

人工神经网络在径流预测中的应用:以黄河流域兰州水文站为例

扫码查看
径流预测对于水力发电、水库调度、洪水预报等领域至关重要,因此建立一种高效、高精度的模型是领域研究重点.针对径流非线性函数特征,本文提出一种基于PCA降维输入变量和遗传算法优化初始参数的BP神经网络模型.首先运用PCA主成分分析,对输入变量降维处理,在保证最大程度反应变量特征的情况下,提升网络速度,达到高效目标.其次运用遗传算法,以预测值和真实值误差的绝对值为适应度函数,优化网络初始权值阈值选取,以此实现精度优化目标.最后将数据划分进行训练与测试,根据评价指标得到模型预测效果.以黄河流域兰州站月径流量为研究对象进行数据训练与预测,通过径流量大小划分平水年以及丰水年优化模型建立.结果表明,与传统BP模型及其他研究者提出的支持向量机、随机森林、Adaboost Regressor回归器模型相比,本文提出的PCA-GA-BP神经网络模型在两类径流数据集上具有更高的预测精度和更快的训练速度.
Application of Artificial Neural Network in Runoff Prediction:A Case Study of Lanzhou Hydrological Station in Yellow River Basin
Runoff prediction is crucial for hydropower generation,reservoir scheduling,flood forecasting and other fields,so the establishment of an efficient and high-precision model is the focus of research in the field.Aiming at the nonlinear function characteristics of runoff,this paper proposes a BP neural network model based on PCA to reduce the dimensionality of input variables and genetic algorithm to optimise the initial parameters.Firstly,PCA principal component analysis is applied to reduce the dimensionality of the input variables to ensure the maximum response to the characteristics of the variables and improve the network speed to achieve the goal of high efficiency.Secondly,genetic algorithm is used to optimise the initial weight threshold of the network by taking the absolute value of the error between the predicted value and the real value as the fitness function,so as to achieve the goal of accuracy optimisation.Finally,the data are divided for training and testing.The model prediction effect is obtained according to the evaluation index.This paper takes the monthly runoff of Lanzhou station in the Yellow River Basin as the research object for data training and prediction,and optimises the model establishment by dividing the runoff size into flat water year and abundant water year.The test results show that compared with the traditional BP model and the models proposed by other researchers such as Support Vector Machine,Random Forest,Adaboost Regressor,etc.,the PCA-GA-BP neural network model proposed in this paper has higher prediction accuracy on the two types of runoff datasets,faster training speed,and is a powerful tool for river runoff prediction.

monthly runoff predictiondata dimensionality reductionoptimal parametersPCA-GA-BP neural network

陈浩芃、王燕、刘富

展开 >

北京印刷学院 机电工程学院,北京 102600

月径流预测 数据降维 优化参数 PCA-GA-BP神经网络

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(12)