首页|基于条带化自相关计算与篡改边缘注意力的复制移动篡改检测网络

基于条带化自相关计算与篡改边缘注意力的复制移动篡改检测网络

扫码查看
自相关计算能够获得特征图的相似度信息,是复制移动篡改检测中的重要模块.但是传统自相关方法计算复杂度高,因此,提出条带化自相关计算,通过将特征图分块处理,有效降低了计算复杂度.此外,边缘特征在复制移动篡改检测中具有关键作用,以往的方法往往仅通过卷积神经网络或Sobel算子等通用手段不加以区分地提取所有边缘特征,未能充分考虑非篡改区域的边缘特征对检测精度产生的负面影响,通过引入篡改边缘注意力机制,利用相似度信息对边缘特征进行加权,突出篡改区域的边缘特征,提高了检测的准确性.此外,在特征融合过程中使用下采样卷积模块捕捉丰富的上下文信息,为网络提供了更多有用的信息.实验结果显示,结合条带化自相关、篡改边缘注意力机制和下采样卷积模块的网络模型在复制移动篡改检测和分类精度上表现出色,优于多个现有方法.
Copy Move Forgery Detection Network Based on Strip Self-correlation Calculation and Tamper Edge Attention
Self-correlation calculation is crucial in identifying highly similar regions in copy move forged images,and is an important technique for copy move forgery detection.Traditional self-correlation methods are limited by their large computational complexity.To solve this problem,strip self-correlation calculation was adopted,which effectively reduced the computational complexity and improved the detection efficiency by processing the feature map into blocks.Meanwhile,edge features play a crucial role in replication,movement,and tampering detection.Traditional methods often extract all edge information indiscriminately through general means such as networks or Sobel operators,but fail to consider the negative impact of irrelevant region edge features on detection accuracy.After introducing the tampering edge attention mechanism,the edge features are weighted by combining similarity information,highlighting the edge features of the tampered area and improving the accuracy of detection.In addition,during the feature fusion process,the downsampling convolution module can capture rich contextual information across scales,providing more useful information for detection.The experimental results show that the network combined with these modules performs well in the accuracy of copying,moving,and tampering detection,outperforming multiple existing methods.

deep learningcopy move forgery detectionstrip self-correlation calculationobject detection

张健豪、于丽芳

展开 >

北京印刷学院 信息工程学院,北京 102600

深度学习 复制移动篡改检测 条带化自相关计算 目标检测

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(12)