首页|基于人工智能的PCB表面缺陷检测研究综述

基于人工智能的PCB表面缺陷检测研究综述

扫码查看
印刷电路板(PCB)是连接和固定电子元件必不可少的组件.其广泛集成在现代电子设备中,包括计算机、手机、电视、数码相机和各种设备.随着集成电路和半导体技术的快速发展,PCB的制造也日益趋向于精密和微小化,从而加大了缺陷检测的挑战.传统算法效率低下且准确度有限,达不到实际生产应用的需求.相比之下,基于人工智能的PCB缺陷检测算法有望实现更高的准确度和效率,这得益于它们能够快速准确地辨别新型缺陷类型.本文对基于传统机器学习和深度学习的PCB缺陷检测算法进行了全面分析,介绍了 8 个公开的PCB缺陷数据集,详细讨论了传统的基于机器学习和基于深度学习的缺陷检测方法,对它们的算法性能、优势和局限性进行比较,总结了PCB缺陷检测领域现今面临的挑战以及展望未来PCB缺陷检测的研究趋势.
A Review of Research on PCB Surface Defect Detection Based on Artificial Intelligence
Printed circuit boards(PCB)are essential components for connecting and fixing electronic components.They are widely integrated in modern electronic devices,including computers,mobile phones,televisions,digital cameras,and various devices.With the rapid development of integrated circuit and semiconductor technology,the manufacturing of PCBs has become increasingly sophisticated and miniaturized,which has exacerbated the challenges of defect detection.Traditional algorithms are inefficient and have limited accuracy,which cannot meet the needs of actual production applications.In contrast,artificial intelligence-based PCB defect detection algorithms are expected to achieve higher accuracy and efficiency,thanks to their ability to quickly and accurately identify new defect types.This paper comprehensively analyzes PCB defect detection algorithms based on traditional machine learning and deep learning,introduces 8 publicly available PCB defect datasets,discusses traditional machine learning-based and deep learning-based defect detection methods in detail,compares their algorithm performance,advantages,and limitations,summarizes the challenges currently faced in the field of PCB defect detection,and looks forward to the research trends of PCB defect detection in the future.

printed circuit boarddefect detectionartificial intelligencemachine visionPCB defect dataset

李宇轩、曾庆涛、陆利坤

展开 >

北京印刷学院,北京 102600

印刷电路板 缺陷检测 人工智能 机器视觉 PCB缺陷数据集

2024

北京印刷学院学报
北京印刷学院

北京印刷学院学报

影响因子:0.247
ISSN:1004-8626
年,卷(期):2024.32(12)