首页|平纹编织复合材料异形结构的多尺度分析研究

平纹编织复合材料异形结构的多尺度分析研究

扫码查看
针对平纹编织复合材料的异形结构,研究了在铺层方向拉伸位移加载以及力加载两种工况下,采用刚度体积平均、一致应变边界条件两种计算均匀化方法所得多尺度计算结果的差异性,并将多尺度结果与精细化结果进行了对比。此外,还研究了异形区域划分数量对多尺度计算结果的影响。结果表明,在同一多尺度模型下,两种均匀化方法的σy应力分布趋势是一致的,并且均与精细化模型结果相吻合。其中位移加载下的多尺度结果与参考结果的mises及σy应力误差最大只有 9。5%和 3。3%,并且随着异形结构分区数量的增加,其误差值逐渐减小。而力加载下的结果误差值偏大,随分区数量的增加没有减小的趋势,并且一致应变边界条件的结果整体上大于刚度体积平均的结果。并且,多尺度模型的划分方式会破坏部分结构特征,并在一定程度上影响多尺度结果。
Multi-scale analysis and research on special-shaped structure of plain weave composites
For the special-shaped structure of plain weave composites,the differences of multi-scale computa-tional results obtained by two homogenization methods,including the stiffness spatial average method and uniform strain boundary condition method,are analyzed in the conditions of ply-direction tensile displacement loading and force loading.The results are compared with the reference results obtained using the whole mesoscopic model.More-over,the influence of the number of partitions on multi-scale computational results is also analyzed.It is shown that the σy stress distribution trend of the two homogenization methods are consistent with same multi-scale model,and the results are in agreement with the fine model.In the displacement load,the maximum errors between the Mises/σy of multi-scale results and the fine results are only 9.5%and 3.3%,and the errors decreased gradually with the increase of the number of partitions.However,the errors of the results in force loading are bigger,and it does not decrease with the increase of the number of partitions.And the results of uniform strain boundary condition are gen-erally larger than the results of stiffness spatial averages.Finally,the partitioning method of multi-scale models will destroy some structural features and affect the multi-scale results to some extent.

plain weave compositespecial-shaped structurecomputational homogenizationmulti-scale

高晗、尚闫

展开 >

南京航空航天大学 航空学院 航空航天结构力学及控制全国重点实验室,南京 210016

平纹编织复合材料 异形结构 计算均匀化 多尺度

2025

复合材料科学与工程
北京玻璃钢研究设计院有限公司

复合材料科学与工程

北大核心
影响因子:0.796
ISSN:2096-8000
年,卷(期):2025.(1)